9 Nudging

9.1 Randomness

Memo

There is strong evidence from the lab that people have misperceptions about what randomness looks like. When a person is asked to generate a series that approximates the flipping of a coin, they will alternate between heads and tails too often, and balance the frequencies of heads and tails over too short a sequence. When people are asked to judge which of two different sequences of coin flips are more likely, they tend to pick sequences with more alternation, despite their probability being the same.

What happens we look for a failure to perceive randomness in the outside world? Out of the lab?

When people watch basketball, they often see a hot hand. They will describe players as “hot” and “in form”. Their belief is that the person who has just hit a shot or a series of shots is more likely to hit their next one.

But is this belief in the “hot hand” a rational belief? Or is the hot hand an illusion, whereby, just like they do with coins, they are seeing streaks in what is actually randomness?

In a famous examination of this question, Thomas Gilovich, Robert Vallone and Amos Tversky took shot data from a variety of sources, including the Philadelphia 76ers and Boston Celtics, and examined it for evidence of a hot hand.

What did they find? The hot hand was an illusion. As Daniel Kahneman wrote in Thinking, Fast and Slow when describing this research:

The hot hand is entirely in the eye of the beholders, who are consistently too quick to perceive order and causality in randomness. The hot hand is a massive and widespread cognitive illusion.

Possibly even more interesting was the reaction to the findings from those in the sporting world. Despite the analysis, many sports figures denied that it could be true. Red Auerbach, who coached the Boston Celtics to nine NBA championships, said “Who is this guy? So he makes a study. I couldn’t care less.”

This provides another insight, about which Gilovich wrote:

The story of our research on the hot hand is only partly about the misperception of random events. It is also about how tenaciously people cling to their beliefs even in the face of hostile evidence.

So, this isn’t just about the misperception of the hot hand, but also about the failure of people to see their error when presented with evidence about it.

Let’s delve into how Gilovich, Vallone and Tversky showed the absence of a hot hand.

Imagine a person who took ten shots in a basketball game. A ball is a hit, an X is a miss.

What would count as evidence of a hot hand? What we can do is look at shots following a previous hit. For instance, in this sequence of shots there are 6 occasions where we have a shot following a previous hit. Five of those shots, such as the seventh here, are followed by another hit.

We can then compare their normal shooting percentage with the proportion of shots they hit if the shot immediately before was a hit. If their hit rate after a hit is higher than their normal shot probability, then we might say they get a hot hand.

This is effectively how Gilovich, Vallone and Tversky examined the hot hand in coming to their conclusion that it doesn’t exist. They also looked at whether there was a hit or miss after longer streaks of hits or misses, but this captures the basic methodology. It seems sensible.

But let me take a detour that involves flipping a coin.

Suppose you flip a coin three times. Here are the eight possible sequences of heads and tails. Each sequence has an equal probability of occurring. What if I asked you: if you were to flip a coin three times, and there is a heads followed by another flip in that sequence, what is the expected probability that another heads will follow that heads?

Here is the proportion of heads following a previous flip of heads for each sequence. In the first row of the table, the first flip is a head. That first flip is followed by another head. After the second flip, a head, we also have a head. There is no flip after the third head. 100% of the heads in that sequence followed by another flip are followed by a head.

In the second row of the table, 50% of the heads are followed by a head. In the last two rows, there are no heads followed by another flip.

Now, back to our question: if you were to flip a coin three times, and there is a heads followed by another flip in that sequence, what is the expected probability that another heads will follow that heads? It turns out it is 42%, which I can get by averaging those proportions.

8 possible combinations of heads and tails across three flips

Flips p(Ht+1|Ht)
HHH 100%
HHT 50%
HTH 0%
HTT 0%
THH 100%
THT 0%
TTH
TTT
Exp.val 42%

That doesn’t seem right. If we count across all the sequences, we see that there are 8 flips of heads that are followed by another flip. Of the subsequent flips, 4 are heads and 4 are tails, spot on the 50% you expect.

What is going on in that second column? By looking at these short sequences, we are introducing a bias. The cases of heads following heads tend to cluster together, such as in the first sequence which has two cases of a heads following a heads. Yet the sequence THT, which has only one shot occurring after a heads, is equally likely to occur. The reason a tails appears more likely to follow a heads is because of this bias whereby the streaks tend to cluster together. The expected value I get when taking a series of three flips is 42%, when in fact the actual probability of a heads following a heads is 50%. As the sequence of flips gets longer, the size of the bias is reduced, although it is increased if we examine longer streaks, such as the probability of a heads after three previous heads.

Why have I bothered with this counterintuitive story about coin flipping?

Because this bias is present in the methodology of the papers that purportedly demonstrated that there was no hot hand in basketball. Because of this bias, the proportion of hits following a hit or sequence of hits is biased downwards. Like our calculation using coins, the expected proportion of hits following a hit in a sequence is lower than the actual probability of hitting a shot.

Conversely the hot hand pushes the probability of hitting a shot after a previous hit up. Together, the downward bias and the hot hand roughly cancelled each other out, leading to the conclusion by researchers that each shot is independent of the last.

The result is, that when you correct for the bias, you can see that there actually is a hot hand in basketball.

When Miller and Sanjurjo crunched the numbers for one of the studies in the Gilovich and friends paper, they found that the probability of hitting a shot following a sequence of three previous hits is 13 percentage points higher than after a sequence of three misses. There truly is a hot hand. If Red Auerbach had coached as though there were no hot hand, what would his record have looked like?

I should say, this point does not debunk the earlier point about people misperceiving randomness. The lab evidence is strong. People tend to see the hot hand when people flip coins. It is possible that people overestimate the strength of the hot hand in the wild, although that is hard to show. But the hot hand exists.

Let’s turn back to one of the quotes I showed earlier.

The story of our research on the hot hand is only partly about the misperception of random events. It is also about how tenaciously people cling to their beliefs even in the face of hostile evidence.

The researchers expanded the original hot hand research from a story about people misperceiving randomness, to one of them continuing to do so even when presented with evidence that they were making an error.

But, as we can now see, their belief in the hot hand was not an error. The punters in the stands were right. Their accumulated experience had given them the answer. The researchers were wrong. Rather than the researchers asking whether they themselves were making an error when people refused to believe their research, they double downed and identified a second failure of human reasoning. The blunt dismissal of people’s beliefs led behavioural scientists to hold an untrue belief for over thirty years

This is a persistent characteristic of much applied behavioural science. It was an error I made many times when I first came to the discipline. We spend too little time questioning our understanding of the decisions or observations other people make. If we believe they are in error, we should first question whether the error is ours.

Jason Collins on Nudgestock 2020