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Abstract
Settlement size predicts extreme variation in the rates and magnitudes of many social and

ecological processes in human societies. Yet, the factors that drive human settlement-size

variation remain poorly understood. Size variation among economically integrated settle-

ments tends to be heavy tailed such that the smallest settlements are extremely common

and the largest settlements extremely large and rare. The upper tail of this size distribution

is often formalized mathematically as a power-law function. Explanations for this scaling

structure in human settlement systems tend to emphasize complex socioeconomic pro-

cesses including agriculture, manufacturing, and warfare—behaviors that tend to differen-

tially nucleate and disperse populations hierarchically among settlements. But, the degree

to which heavy-tailed settlement-size variation requires such complex behaviors remains

unclear. By examining the settlement patterns of eight prehistoric NewWorld hunter-gath-

erer settlement systems spanning three distinct environmental contexts, this analysis

explores the degree to which heavy-tailed settlement-size scaling depends on the afore-

mentioned socioeconomic complexities. Surprisingly, the analysis finds that power-law

models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gath-

erer settlement-size variation. This finding reveals that incipient forms of hierarchical settle-

ment structure may have preceded socioeconomic complexity in human societies and

points to a need for additional research to explicate how mobile foragers came to exhibit set-

tlement patterns that are more commonly associated with hierarchical organization. We pro-

pose that hunter-gatherer mobility with preferential attachment to previously occupied

locations may account for the observed structure in site-size variation.
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Introduction
Extreme settlement-size variation predicts extreme variation in the rates and magnitudes of
many social and ecological processes in human societies including the rates and magnitudes of
technological innovation, disease transmission, crime, and wealth [1–8]. Understanding how
extreme settlement-size variation self-organizes (sensu [9]) and persists in human societies is
therefore relevant to modeling such processes. Yet, the behavioral basis for settlement-size vari-
ation remains poorly understood [10–12]. Previous demographic research on hierarchically
organized societies has observed that settlement-size variation, whether measured by census
counts or areal extents, is heavy-tailed with the largest settlements in the upper tail of the distri-
bution tending to exhibit scale-free, or power-law structure such that f(x)/ x‒α, where x is set-
tlement size and α is a scaling exponent [13–15]. Scholars commonly link this variation to
central-place theory (sensu [16]) with various combinations of agriculture, specialized craft
production (i.e., manufacturing), elite competition, and warfare driving hierarchical order
among settlement systems by differentially dispersing and nucleating populations [11,17–23].
Given such behavioral models, we might expect hierarchical settlement patterns to be absent
among hunter-gatherer societies, which often lack the complex socioeconomic drivers enumer-
ated above.

Current studies of human settlement-size variation are overwhelmingly biased toward mod-
ern and historical settlement systems of western cultures [10,16,24–26], thus limiting our abil-
ity to evaluate the social and environmental contexts that foster the self-organization of
hierarchical settlement structure. Considerable attention has been given to the structure of U.S.
settlement systems, for example. The largest cities in U.S. settlement systems appear to exhibit
power-law scaling in their size distribution [10,11,14,24,27]. Archaeological research extends
the scope of settlement-size studies to include the settlement systems of prehistoric non-west-
ern cultures, especially state-organized societies such as Maya, Mesopotamia, and Tiwanaku
[19,20,28,29]. To a lesser extent, non-state agricultural societies have also been examined
[30,31]. Comparable analyses of settlement-size structure among hunter-gatherer societies are
rare ostensibly because conventional wisdom holds that hierarchical structure of any form is
antithetical to egalitarian hunter-gatherer economies. Yet, there is reason to suspect power-law
structure in the absence of socioeconomic complexity. Some gregarious animal species appear
to exhibit power-law scaling in their group sizes [32], and some predatory animals appear to
exhibit power-law structure in the distribution of waiting times—the time spent in a given loca-
tion before moving to another [33]. Analogous forms of either of these behaviors—differential
aggregation or waiting times—could conceivably generate power-law structure in archaeolog-
ical settlement-size variation in hunter-gatherer settlement systems.

Hamilton et al. [34] made the surprising observation that log-linear structure characterized
group-size variation among 339 ethnographic hunter-gatherer settlement systems. Though the
semi-quantitative data structure may or may not reflect power-law scaling per se, it is indicative
of heavy-tailed structure and suggests the possibility that power-law structure is a property of
hunter-gatherer group-size variation. Moreover, two other studies have argued that power-law
scaling characterized waiting times in ethnographic! Kung foraging patterns [35,36]. While
these novel studies represent key data points in our understanding of hunter-gatherer settle-
ment structure, the fact that all ethnographic hunter-gatherers were economically integrated
with sedentary agricultural and industrial societies to some degree [37,38] raises the concern
that the observed scaling patterns are a result of those socioeconomic relations and not an
endogenous property of hunter-gatherer systems.

Resolution of the question of power-law scaling in hunter-gatherer settlement size holds
implications for our understanding of how complex socioeconomic structure self-organizes in
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human societies. The immediate goal of this analysis, then, is to reject the null hypothesis of
power-law scaling among hunter-gatherer settlement systems. We analyze the statistical struc-
ture of settlement-size variation among eight prehistoric hunter-gatherer settlement systems
that unequivocally existed in the absence of agricultural and industrial economies. We assume
that if waiting times among hunter-gatherer settlements were power-law distributed, then arti-
fact quantities among those sites should also be power-law distributed. If co-resident group
size was power-law distributed, then both site area and artifact quantities should be power-law
distributed.

The case studies examined here include 1779 temporally diagnostic artifacts from 405
archaeological sites. The total span of occupation for the sample includes more than 4000 years
of the Early and Middle Holocene Epoch and three distinct environmental contexts including
montane Peru, coastal Peru, and interior U.S. Southwest. While our analysis is able to reject the
power-law hypothesis for site-area variation, it is unable to reject the power-law hypothesis for
hunter-gatherer site-size variation as measured by artifact-per-site counts. Although this find-
ing should not be construed as an assertion of power-law scaling, it strongly supports the pres-
ence of heavy-tailed statistical structure in the data and offers contingent support for power-
law scaling. This support forms an independent and convergent line of empirical evidence that
is immune to the biases faced by ethnographic data, albeit subject to its own biases. This paper
describes the materials, methods, and results of the analysis. We conclude with a discussion of
the study's implications for models of hunter-gatherer mobility and the self-organization of
complexity in human societies.

Materials and Methods
To test the hypothesis of power-law structure in hunter-gatherer settlement-size variation, we
examine the size distribution of prehistoric archaeological sites in hunter-gatherer settlement
systems. This section describes the sample, the archaeological proxies of settlement size, and
the procedure used to test for power-law scaling.

Archaeological Sample
The sample analyzed here consists of 1779 temporally diagnostic artifacts from 405 archaeolog-
ical sites representing eight prehistoric NewWorld settlement systems and three distinct arid
environments (Figs 1 and 2, [39]). Each system represents an unequivocal hunter-gatherer
economy marked by economic dependence on wild resources and high degree of residential
mobility. Agricultural neighbors were either absent or highly unlikely in all cases. Environmen-
tal contexts range from 16° south latitude to 33° north latitude, sea level to over 3800 masl, sea-
sonal to cold effective temperature regimes, arid to hyper-arid precipitation regimes, and
desert to grassland biomes. The broad temporal and environmental scope of this sample serves
to explore the generality of settlement-size structure within a narrow hunter-gatherer eco-
nomic regime. For each settlement system, field researchers conducted systematic pedestrian
surveys that recorded site locations and areal extents. Sites consist of spatially discrete artifact
clusters separated by artifact-free expanses. One-hundred-percent surface collections of tem-
porally diagnostic artifacts were conducted in each case. Artifact looting is absent or negligible
in all cases, thus minimizing a potential source of sample bias. The surprising lack of projectile-
point looting is attributable to cultural and historic circumstances specific to each region. In
the Titicaca Basin, we have yet to observe an instance of avocational projectile-point collection
during our combined experience in the region which spans over 30 years. In the Jequetepeque
region, looters tend to overlook lithic artifacts in favor of gold and pottery from later contexts
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[40,41]. Sites on the Gila River Indian Reservation have remained relatively protected from col-
lection due to cultural prohibitions against disturbing prehistoric sites [42].

The first environmental context considered is the western Lake Titicaca Basin in the Andes
Mountains of highlands Peru. Elevations range from 3800 masl at Lake Titicaca to 6400 masl at
the peak of Cerro Janq'u Uma. Human populations intensively inhabited the lower elevations in
an environment known as the Altiplano—a vast expanse of rolling-hill grasslands dissected by
perennial rivers and flanked by mountains [44]. Precipitation varies from approximately 300 to
900 mm/yr depending on elevation, local physiography, and climatic conditions. Mean daily
temperature lows and highs range from -10°C to 19°C according to a seven-year period of
record for the Inca Manco Cápac International Airport weather station in Juliaca, Peru.

Two study areas within the Titicaca Basin were examined. The first study area is the Río
Ilave Basin, centered at 16°12'40”S, 69°43'20”W (WGS 1984). Elevations range from approxi-
mately 3830 to 3900 masl with adjacent mountains to 4600 masl. In a 41-km2 sample area of
the Ilave Basin, Aldenderfer and colleagues recorded 90 archaeological sites with Archaic
Period hunter-gatherer artifacts [45]. In addition, the first author revisited 24 of those sites and
recorded 6 new sites. The second study area in the Titicaca Basin is the Río Huenque study

Fig 1. Geographic locations of prehistoric settlement systems examined in this study. Background image courtesy of NASA Earth Observatory [39].

doi:10.1371/journal.pone.0140127.g001
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Fig 2. Examples of temporally diagnostic projectile points. Temporally diagnostic artifacts are used to (a)
assign archaeological sites to settlement systems and (b) measure site size in terms of artifact counts. Top
row: Titicaca Basin Late Archaic Period. 2nd row: Titicaca Basin Middle Archaic Period. 3rd row: Titicaca
Basin Early Archaic Period. 4th row: Gila River Middle Archaic (images reproduced with permission of author
[43]). Bottom row: Jequetepeque Paijan.

doi:10.1371/journal.pone.0140127.g002
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area, centered at 16°45'50”S, 69°43'40”W (WGS 1984) [46]. The 33-km2 sample area occurs in
a relatively restricted valley where elevations range between approximately 3940 and 4070
masl. Surrounding mountains rise to 5100 masl. Klink recorded 139 archaeological sites with
hunter-gatherer artifacts in this area [46].

A detailed projectile point typology allows us to divide the long hunter-gatherer occupation
of the Andean Altiplano into Early (11,500–9000 cal. B.P.), Middle (9000–7000 cal. B.P.), and
Late (7000–5000 cal. B.P.) Archaic periods [47]. All of these periods represent subsistence
economies reliant on vicuña (a wild camelid), taruca (Andean deer), wild seeds, and wild tubers
[48]. The three temporal divisions in conjunction with the two environmental sub-contexts
comprise six archaeological settlement systems.

The second environmental context considered is the Jequetepeque coastal plain and foot-
hills of northern Peru, 1400 km northwest of the Altiplano study area. The extremely arid envi-
ronment rarely receives more than 50 mm of rainfall per year. Mean daily temperature lows
and highs range from 16°C to 31°C according to a 19-year period-of-record at the Capitán FAP
José A. Quiñones Gonzales Airport weather station in Chiclayo, Peru. However, the Pacific lit-
toral and lush alluvial plains offer highly productive, localized resource zones with diverse and
often-abundant marine and terrestrial resources [49]. Dillehay and Maggard [50,51] conducted
archaeological settlement surveys covering 70 km2 centered at 7°9'11"S, 79°22'31"W (WGS 84).
The efforts recorded 126 hunter-gatherer sites with material evidence of Paijan culture—a
hunter-gatherer tradition marked by distinctive flaked stone technologies that persisted from
approximately 11,000–8500 cal. B.P. [51,52].

The third environmental context considered is located in the Middle Gila River of the U.S.
Southwest at 33°8'53"N, 111°51'10"W, approximately 6000 km to the northwest of the Jequete-
peque region. The Sonoran Desert environment averages 200 mm of precipitation per year.
Mean daily temperature lows and highs range from 3°C to 40°C according to a 21-year period
of record at the Casa Grande Municipal Airport weather station in Casa Grande, Arizona. Sur-
face water is scarce and ephemeral. Major hunter-gatherer subsistence resources include big-
horn sheep, whitetail deer, rabbit, mesquite seed pods, and cactus fruit [53]. Gila River Indian
Community archaeologists reported Middle Archaic Period (5000–4000 cal. B.P.) projectile-
point counts for 50 archaeological sites in a 591-km2 area [43]. These counts comprise the
eighth and final case study investigated here.

Identification numbers for previously unpublished specimens are presented in S1 Speci-
mens. All necessary permits were obtained for the described study, which complied with all rel-
evant regulations. The archaeological specimens that inform this study were collected and
curated in compliance with Peruvian law as stipulated in Resolución Directoral No 064-
2013-DGPA-VMPCIC/MC issued to Haas, Aldenderfer, and Carlos Viviano Llave; DGPA-
0122-2002 issued to Maggard and colleagues; and C038-98 issued to Klink by the Ministry of
Culture, Republic of Peru. The Altiplano field collections are temporarily housed at the Colla-
suyo Archaeological Research Institute (Jr. Nicaragua 199, Puno, Puno, Peru) as stipulated in
the respective research permits. The collections will be permanently curated at an official Min-
istry of Culture artifact repository to be determined at the time of dispossession. The Jequetepe-
que region collection is permanently curated at the Ministry of Culture's Huaca Arco Iris
facility in Trujillo. No permits were required to use the previously published Gila River data.

Measuring Settlement Size
We use two archaeologically tractable metrics of settlement size—artifact count and areal
extent. It is first important to consider the possibility that the very act of defining sites might
generate power-law structure in site-size variation (c.f., [54]). Defining sites is a subjective
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process in which field investigators identify artifact clusters, define their boundaries, and if nec-
essary decide whether to split or aggregate adjacent clusters. In the study regions considered
here, inter-cluster distances tend to be large relative to cluster size, thus distinguishing artifact
clusters is relatively unambiguous in most instances. Regardless of the degree of ambiguity, we
are unable to identify a clear theoretical link between the site-definition process and any of the
generic mechanisms known to produce power-law or power-law-like structure [13,55]. We
therefore currently have no theoretical reason to suspect that the site definition process poses a
confounding factor in this study.

Given that sites represent behaviorally meaningful units of analysis, a site's artifact count is
considered a relative proxy for person-hours of occupation, or cumulative waiting times. In
general, the greater the number of individuals that occupy a settlement and the longer it is
occupied, the greater the deposition of cultural materials. Thus, if hunter-gatherer waiting
times were power-law distributed as previous studies have suggested [35,36], then we would
expect to find that artifact-per-site counts are similarly distributed. To avoid over-estimation
of artifact counts due to extraneous periods of activity, only temporally diagnostic artifacts for
the periods of interest are used. Temporally diagnostic artifacts include projectile points in all
eight settlement systems under consideration. In the Jequetepeque case, other temporally diag-
nostic tool types include bifacial preforms, scrapers, and limaces. Limaces are a unifacial, steep-
edged flaked stone tools of uncertain function and are unique to Paijan culture [51]. In the
north coast of Peru, bifacial flaked stone tools, scrapers, and limaces generally do not extend
beyond the period of Paijan occupation and therefore can be considered diagnostic of that
period. In highlands Peru and the U.S. Southwest, this is not the case. Thus, we are restricted to
projectile points as temporally diagnostic artifacts in those cases. The raw artifact counts used
in this analysis are provided in S1 Dataset.

A site's areal extent is considered a relative proxy for co-resident population size. In general,
the more individuals that contemporaneously occupy a location, the more horizontal space
they require. Thus, if co-resident group sizes were power-law distributed as previous studies
have suggested [35,36], then we would expect to find that site-area values are similarly distrib-
uted [14,56]. Although specific activities may also affect site artifact counts and areas, we
assume they are reasonable proxies for hunter-gatherer occupation intensity. This assumption
finds empirical support in the ethnoarchaeological work of Yellen [57].

We compiled site-area estimates as reported by field analysts for seven of the eight settle-
ment systems analyzed. Site-area estimates are not available for the Gila River case; however, as
will be seen below, this omission does not affect the consistent results obtained in the other
cases. In general, all of the field procedures for site-area estimation entailed qualitative identifi-
cation of the maximal extents of artifact dispersion followed by maximal length and width esti-
mations using tape or pace-based methods. Length and width dimensions were then multiplied
to give area estimates.

Estimation of archaeological site area is potentially confounded by several sources of error.
In this study, error sources include subjectivity in defining sites, imprecision in estimation of
site dimensions, the use of length and width to estimate the areas of non-rectangular entities,
and post-depositional movement of artifacts. Nonetheless, none of these factors are likely to
confound this analysis because the error in each case tends to be linearly distributed and is thus
insignificant relative to the question of non-linear structure in site-size variation. In other
words, if site-area variation is truly power-law distributed, then such linear sources of error
would be insufficient to bias the data to the extent that they would mask the extreme variation
that non-linear power-law models entail. Moreover, the cumulative effects of such error sources
would also be unlikely to confound tests of power-law structure. Suchmultiplicative effects are
well known to generate lognormal variation as opposed to power-law variation [13,55].
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Another confounding factor relates to reuse of sites by exogenous populations. Such occu-
pations can inflate site-area estimates and therefore confound the settlement-area signal of the
target system. We employ several bias-control measures to minimize this effect. For the Alti-
plano settlement systems, a site's area is included in a given dataset only if the majority of the
diagnostic projectile points for that site can be assigned to the period of interest. In doing so, it
is likely that the site's area is primarily a function of occupation during the period of interest.
We consider three thresholds for inclusion in the Altiplano site-area datasets—greater than 50,
70, and 90 percent temporally diagnostic artifacts. Each threshold reflects a tradeoff between
sample quality and size. Whereas higher thresholds offer more reliable samples, they tend to
reduce the number of samples available for analysis. This sampling strategy produces 14 dis-
tinct datasets (two subregions x three time periods x three data thresholds—four equivalent
pairs) for the Altiplano study area.

In the Jequetepeque case where flaked stone tool traditions are more constrained in time, we
take three approaches to control for site-area inflation. Again, each approach reflects a tradeoff
between sample quality and size. First, we examine all sites with one or more Paijan artifacts.
Second, only sites identified as single component with Paijan artifacts are examined. Third,
sites with one or more Paijan artifacts and excluding sites with ceramic artifacts are examined
because ceramics are associated with later agricultural occupations. Site-area estimates are pro-
vided in S1 Dataset.

Power-law Analysis of Settlement-Size Variation
Each dataset is analyzed in six steps in an effort to reject the hypothesis of power-law scaling.
First, cumulative mass and cumulative density function (CMF and CDF, respectively) plots
with logarithmic axes are used to inspect the data structure. Power-law distributions generate
linear trends in such plots (i.e., they are log-linear) while other statistical structures tend to
produce upwardly convex curves [13]. Second, we use maximum likelihood estimation (MLE)
to find the best-fit model parameters for each of a candidate set of statistical models [27,58].
Because artifact-count data are discrete integer data, we consider Poisson, geometric, and dis-
crete power-law distributions. For site-area data, which consist of continuous data measured
in square meters, the candidate set of statistical models that we consider include normal,
exponential, lognormal, and power-law (Pareto) distributions. Each of these statistical models
considered has seen explicit or implicit use in the study of human settlement-size variation
(e.g., [18,21,25]) and therefore merits consideration in our effort to reject the power-law
hypothesis.

Third, we assess the statistical plausibility of each model fit to the data using the goodness-
of-fit test described by Clauset et al. [27]. For each empirical dataset (i), consisting of ni sites,
we first solve for the KS distance between the empirical data and the MLE model (Dm). Next,
we draw a random sample of ni values from the MLE-generated statistical model. We then
solve for the KS distance between the empirical and synthetic data (Ds). This procedure is then
iterated 2500 times, and the fraction of times Ds is greater than Dm defines the probability (p)
that the difference between the data and a given statistical model is a product of statistical
chance alone. If p� 0.10, then the model is rejected. If p> 0.10, then the model is considered
plausible. The number of iterations and probability thresholds used here reflect the recommen-
dations of Clauset et. al.

Fourth, we compare the relative information content of each statistically plausible model
using Akaike information criterion (AIC) and AIC weights following the method described by
Edward's et al. [59]. Models that generate low AIC weights (w� 0.10) are rejected in favor of
those that produce high AIC weights (w> 0.10).

Settlement-Size Scaling and Prehistoric Hunter-Gatherers

PLOS ONE | DOI:10.1371/journal.pone.0140127 November 4, 2015 8 / 25



Fifth, we consider power-law structure in the upper tails of the distributions. Unlike other
statistical distributions, theoretical power-law distributions are scale invariant meaning that
they obtain over an infinite range of values. Real-world phenomena, however, have finite size
limits that restrict the potential range of applicability of power-law scaling [13]. Even in data-
sets where power-law models can be rejected for the full range of data, the possibility remains
that power-law structure pertains to some upper-tail fraction of the data [13]. Defining this
range is an analytical problem that must be addressed. To test for power-law scaling in the
upper tails of the empirical distributions, we apply the iterative KS-test method of Clauset et al.
[27] to find the most-probable threshold value (xmin) for the hypothesized power-law tail of a
given data sample. We then use MLE to find a best-fit power-law model for the tail and the pre-
viously described goodness-of-fit test to assess the statistical plausibility of the model. An
upper-tail power-law model is rejected if the difference between the data and the model are
unlikely to be explained by statistical chance (p� 0.10).

Sixth and finally, we present a power analysis (not to be confused with power-law analysis),
which serves two purposes. First, the power analysis serves to demonstrate that the methods
and code function as intended. Second, the analysis serves to assess the probability of type I
and II errors that might result given the sample size and statistical models under consideration.
The power analysis consists of seven tests—one for each of the statistical models considered in
this study. In each test, random samples are drawn from synthetic statistical distributions with
known parameter values. The synthetic data are then analyzed with the same code used to ana-
lyze the empirical data. Sample sizes and parameter values for the synthetic data are selected at
random from the set of sample sizes and parameter values observed in the empirical data. The
procedure is iterated 100 times to evaluate the ratio of correct:incorrect model identifications.
Correct identifications include those that produce insignificant p values (p> 0.1) and AIC
weights (w> 0.1), indicating that the known model cannot be ruled out as providing a plausi-
ble fit to the data. Incorrect identifications include those that produce significant probability
values (p� 0.1) and AIC weights (w� 0.1), indicating a poor fit between the model and the
data despite the fact that their congruence is known. The ratio of correct:incorrect results gives
a probabilistic measure of the procedure's efficacy, which we can then use to evaluate the
robustness of the conclusions reached in the analysis of the empirical data. All calculations are
performed using R statistical computing language including functions from MASS and PoweR-
law packages [60–62]. The code is presented in S1 Code.

Results
For the discrete artifact-count data, CMF plots reveal clear log-linearity in all datasets suggest-
ing power-law statistical structure (Fig 3). Maximum likelihood estimations of model parame-
ters are presented in Table 1 along with the statistical plausibility results. The goodness-of-fit
test is unable to reject power-law structure in seven of ten datasets (Fig 4). Conversely, best-fit
Poisson models provide plausible fits to the data in just one of seven datasets, and geometric
models offer implausible fits to all datasets. Two datasets did not produce plausible fits to any
of the statistical models considered. Given that each dataset produced a single plausible result,
AIC comparison is not applicable to the artifact count data.

The power-analysis for the discrete artifact-count data confirms the method's efficacy and
suggests an exceedingly small chance of obtaining the results by statistical chance alone. The
procedure correctly identifies 90 percent of the synthetic power law data as consistent with
power-law models (Fig 5, see also S1 Table). Power-law structure was never incorrectly identi-
fied given Poisson data and only once (1 percent) given geometric data. Accordingly, the
power analysis results suggest an exceedingly small chance that the 7 datasets identified as
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consistent power-law models came from Poisson or geometric distributions. Moreover, the fact
that 10 of the 100 of the synthetic power law models were misidentified (10 incorrect:90 cor-
rect) as inconsistent with all of the models under consideration raises the possibility that type
II error could account for the 2 of 8 empirical datasets found to be inconsistent with all consid-
ered models (2 incorrect:6 correct; Fisher's Exact Test odds ratio = 0.34, 95% C.I. = 0.05–3.86,
p = 0.22). In sum, the artifact-per-site datasets are generally consistent with power-law models
and inconsistent with the alternatives.

For the continuous site-area data, CDF plots reveal convex structure over the full range of
the data, suggesting an absence of power-law structure (Fig 6). Moreover, the more-rigorous
goodness-of-fit and AIC analyses indicate that power law models offer poor characterizations
of the full range of data in all seven archaeological settlement systems. Power law models are
plausible and parsimonious for only three of the seventeen datasets, and other statistical mod-
els are also plausible in those three cases (Tables 2 and 3, see Fig 4). Normal distributions also

Fig 3. Cumulative mass function plots for artifact-per-site counts (discrete data). Axes are logarithmic.
The log-linear structure is consistent with power-law structure.

doi:10.1371/journal.pone.0140127.g003
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Table 1. MLE parameters and goodness-of-fit results for artifact count data.

settlement system dataset artifacts sites statistical
model

parameter
estimates

KS
D

p

Titicaca Basin Ilave Late Archaic 1. temporally diagnostic projectile
points

463 70 Poisson λ = 6.61 0.52 0.00

geometric prob = 0.13 0.25 0.00

power law α = 1.68, xmin = 1 0.08 0.11*

power-law tail α = 2.13, xmin = 6 0.07 0.62*

Titicaca Basin Huenque Late
Archaic

2. temporally diagnostic projectile
points

235 83 Poisson λ = 2.83 0.23 0.81*

geometric prob = 0.26 0.45 0.00

power law α = 1.83, xmin = 1 0.12 0.01

power-law tail α = 10.75, xmin = 7 0.02 0.95a

Titicaca Basin Ilave Middle Archaic 3. temporally diagnostic projectile
points

64 36 Poisson λ = 1.78 0.47 0.00

geometric prob = 0.36 0.59 0.00

power law α = 2.35, xmin = 1 0.07 0.11*

power-law tail α = 3.08, xmin = 2 0.06 0.48a

Titicaca Basin Huenque Middle
Archaic

4. temporally diagnostic projectile
points

148 64 Poisson λ = 2.31 0.33 0.07

geometric prob = 0.30 0.51 0.00

power law α = 2.06, xmin = 1 0.10 0.02

power-law tail α = 2.57, xmin = 2 0.03 0.97*

Titicaca Basin Ilave Early Archaic 5. temporally diagnostic projectile
points

33 20 Poisson λ = 1.65 0.51 0.01

geometric prob = 0.38 0.61 0.00

power law α = 2.37, xmin = 1 0.07 0.31*

power-law tail α = 2.37, xmin = 1 0.07 0.31*

Titicaca Basin Huenque Early
Archaic

6. temporally diagnostic projectile
points

96 55 Poisson λ = 1.75 0.48 0.00

geometric prob = 0.36 0.60 0.00

power law α = 2.32, xmin = 1 0.04 0.53*

power-law tail α = 2.32, xmin = 1 0.04 0.53*

Gila River Middle Archaic 7. temporally diagnostic projectile
points

94 50 Poisson λ = 1.88 0.44 0.01

geometric prob = 0.35 0.57 0.00

power law α = 2.25, xmin = 1 0.07 0.14*

power-law tail α = 2.25, xmin = 1 0.07 0.14*

Jequetepeque Paijan 8. all flakestone tools 646 126 Poisson λ = 5.13 0.48 0.00

geometric prob = 0.16 0.30 0.00

power law α = 1.73, xmin = 1 0.07 0.06

490 33 power-law tail α = 2.21, xmin = 5 0.07 0.36*

9. Paijan points and limaces 237 65 Poisson λ = 3.65 0.44 0.00

geometric prob = 0.22 0.38 0.00

power law α = 1.88, xmin = 1 0.05 0.34*

power-law tail α = 1.88, xmin = 1 0.05 0.34*

10. Paijan points 163 45 Poisson λ = 3.62 0.41 0.00

geometric prob = 0.22 0.39 0.00

power law α = 1.85, xmin = 1 0.07 0.34*

(Continued)

Settlement-Size Scaling and Prehistoric Hunter-Gatherers

PLOS ONE | DOI:10.1371/journal.pone.0140127 November 4, 2015 11 / 25



offer plausible and parsimonious characterizations for just three datasets. In contrast, lognor-
mal models are plausible and parsimonious for 13 of the 17 datasets, and exponential distribu-
tions are plausible and parsimonious for 12 of the 17 datasets. Only one dataset did not
produce a plausible fit to any of the models considered. Power-law models offer plausible fits
to the upper tails of 8 of the 17 datasets.

The power analysis results for the continuous data are presented in Fig 7 (see also S2 Table).
The results confirm the method's efficacy and suggest an exceedingly small chance of obtaining
the analytical results by statistical chance alone. Given samples drawn from power-law models
with parameter values in the range of the empirically estimated values, the procedure correctly
identifies 97 percent as consistent with power-law models. Moreover, power-law structure is
identified in the upper tails of 97 percent of the synthetic power-law data samples.

However, the procedure also incorrectly identifies models with low frequency. Because the
empirical data show that power-law structure is highly unlikely to obtain over the full range of
empirical data but is plausible for the upper tails of the data, we are most concerned here with
how likely power-law structure is to be spuriously identified in the upper tails of non-power-
law samples. The procedure incorrectly finds power-law structure in the upper tails of 67 per-
cent of the lognormal data samples. The same misidentification occurs 27 percent of the time
given exponential data. Normally distributed data generate upper tails that are spuriously iden-
tified as power-law distributed 9 percent of the time.

Recall that the archaeological site-area data produced 8 of 17 datasets with plausible power-
law structure in the upper tails of the distributions. Given that (a) exponential, lognormal, and
normal structure is found to be consistent for the full range of data 12, 13 and 3 times, respec-
tively, in the 17 continuous archaeological datasets and (b) the proportion of times we expect
those distributions to generate upper tails identifiable as power-law distributed, we would
expect to have spuriously identified power-law structure in the upper tails in 0.27 � 12 + 0.67 �

13 +0.09 � 3 = 12 of 17 datasets. This expectation more than accounts for the 8 of 17 archaeo-
logical datasets with plausible power-law tails, leading us to conclude that in the case of site-
area data, the observed plausibility of power-law structure in the upper tails may simply be an
artifact of sample uncertainty.

In sum, the results show that power-law models provide plausible and parsimonious charac-
terizations of hunter-gatherer site-size variation when settlement-size is measured by artifact
counts but that power-law models are unlikely to characterize hunter-gatherer settlement-size
variation when settlement size is measured by areal extent.

Table 1. (Continued)

settlement system dataset artifacts sites statistical
model

parameter
estimates

KS
D

p

power-law tail α = 1.83, xmin = 1 0.07 0.34*

*Plausible models at p > 0.10.
aIn some cases, the methods described above yield a p-value in the range of statistical plausibility but a power-law scaling parameter that exceeds the

upper limit of acceptable values (α � 3). Such values are theoretically problematic because they describe distributions that are not scale invariant and

thus converge on non-power law distributions [15]. Moreover, such values are greater than those found to describe settlement hierarchy in the empirical

cases of complex societies. For these reasons, an otherwise statistically plausible power-law model is rejected if the scaling parameter is greater than or

equal to three.

doi:10.1371/journal.pone.0140127.t001
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Discussion
On one hand, previous research on agricultural and state-organized societies has suggested
that power-law scaling of settlement-size variation is a property of complex, hierarchical socio-
economic processes, which tend to be absent among hunter-gatherer societies. On the other
hand, ethnographic research has suggested that power-law scaling characterized hunter-gath-
erer settlement-size variation. Although the latter claim would seem to trump the former, eth-
nographic data limitations cast some concern on the degree to which scaling properties are
intrinsic to hunter-gatherer systems or are artifacts of economic connections with sedentary
societies. To our knowledge, this paper presents the first rigorous analysis of hunter-gatherer
settlement-size variation as observed through archaeological data. The analysis provides an

Fig 4. Summary of model-selection results for empirical datasets. Power-law models are favored in the
artifact-count (discrete) data but not in the site-area (continuous) data. Bar labels indicate number of datasets
found to fit the given statistical model. Proportions are within the discrete and continuous categories. Error
bars indicate 5–95% quantile range derived by bootstrapping with 10,000 iterations.

doi:10.1371/journal.pone.0140127.g004
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independent, complementary test that is immune to the limitations faced by ethnographic
observations, albeit with its own limitations.

We have reasoned that if hunter-gatherer waiting times varied as a power-law function,
then artifact-per-site quantities in a given hunter-gatherer settlement system should also vary
as a power-law function. If hunter-gatherer group-size varied as a power-law function, then
both site areas and artifact quantities in a given hunter-gatherer settlement system should vary
as a power-law function. Although the analysis rejected power-law scaling for site-area varia-
tion, it was unable to reject power-law scaling for hunter-gatherer site-size variation as mea-
sured by artifact-per-site counts. These conclusions are consistent with a model of power-law
distributed site occupation spans, or cumulative waiting times, and inconsistent with a model
of power-law distributed co-resident group sizes.

Fig 5. Results of power analysis for artifact-count (discrete) data. The analysis shows that given the
sample sizes and MLEmodel-parameter values (a) the probability of failing to identify power-law structure
when power-law structure is present (type II error) is highly unlikely and (b) the probability of spuriously
identifying power-law structure given Poisson or geometric data (type I error) is also highly unlikely. See also
S1 Table.

doi:10.1371/journal.pone.0140127.g005
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To be sure, our inability to reject power-law scaling in artifact-count variation should not be
confused with assertion of power-law structure. Alternative statistical models may yet offer
stronger fit to the data and should be explored as theory dictates. Regardless, it is clear that
hunter-gatherer site-size variation in arid environments tends to exhibit heavy-tailed structure.
Hunter-gatherer research now faces the challenge of explaining the structural properties
described here. We currently lack models of hunter-gatherer mobility, social interaction, or site
formation that explicitly predict this structure. Efficacious models will be those that predict (a)
heavy-tailed statistical structure in the size-distributions of hunter-gatherer settlements as
measured by cumulative occupation time and (b) exponential or lognormal structure as mea-
sured by co-resident group size.

A Preferential Attachment Model of Forager Mobility
We briefly consider a candidate model here to offer a potential guide for future research. The
working model posits that heavy-tailed site-size variation in hunter-gatherer settlement sys-
tems was a property of long-term preferential attachment to places on landscapes. Preferential
attachment is a term that statistical physicists use to describe a generic class of processes that
entail feedback loops [13,55]. Importantly, preferential attachment is one of several mecha-
nisms known to give rise to power-law structure. The “rich-get-richer” is a classic example of a
preferential attachment process that gives rise extreme wealth disparity among individuals in a
given society and is often characterized by power-law (i.e., Pareto) models [13]. We can readily

Fig 6. Cumulative density function plots for site-area (continuous) data. Axes are logarithmic. The
upwardly convex data structure suggests an absence of power-law structure over the full range of data. Only
the 50% threshold data are displayed for the Altiplano datasets.

doi:10.1371/journal.pone.0140127.g006
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Table 2. MLE parameters and goodness-of-fit results for site area data.

settlement system dataset total site
area (ha)

sites statistical
model

MLE parameter
values

KS D p

Titicaca Basin Ilave Late
Archaic

1. sites > 50% Late Archaic points 20.3 51 normal μ = 3983, σ = 4462 0.21 0.00

exponential λ = 2.51x10-4 0.08 0.72*

lognormal μ = 7.70, σ = 1.34 0.13 0.02

power law α = 1.18, xmin = 9 0.43 0.00

11.3 11 power-law tail α = 3.27, xmin =
6231

0.07 0.98a

2. sites > 70% and > 90% Late Archaic
points

15.4 33 normal μ = 4658, σ = 5228 0.23 0.00

exponential λ = 2.15x10-4 0.11 0.61*

lognormal μ = 7.87, σ = 1.21 0.11 0.39*

power law α = 1.27, xmin = 66 0.37 0.00

14.0 20 power-law tail α = 2.27, xmin =
2574

0.14 0.12*

Titicaca Basin Huenque Late
Archaic

3. sites > 50% Late Archaic points 10.0 38 normal μ = 2637, σ = 1919 0.11 0.35*

exponential λ = 3.79x10-4 0.12 0.35*

lognormal μ = 7.53, σ = 0.94 0.13 0.14*

power law α = 1.47, xmin =
236

0.29 0.00

6.9 15 power-law tail α = 3.91, xmin =
3204

0.13 0.48a

4. sites > 70% Late Archaic points 6.0 23 normal μ = 2591, σ = 1864 0.12 0.55*

exponential λ = 3.86x10-4 0.14 0.45*

lognormal μ = 7.51, σ = 0.94 0.16 0.13*

power law α = 1.49, xmin =
236

0.28 0.01

4.4 10 power-law tail α = 4.45, xmin =
3204

0.16 0.39a

5. sites > 90% Late Archaic points 2.9 14 normal μ = 2083, σ = 1983 0.19 0.17*

exponential λ = 4.80x10-4 0.15 0.72*

lognormal μ = 7.17, σ = 1.01 0.17 0.33*

power law α = 1.59, xmin =
236

0.21 0.18*

2.9 13 power-law tail α = 1.76, xmin =
393

0.17 0.15*

Titicaca Basin Ilave Middle
Archaic

6. sites > 50% Middle Archaic points 3.2 16 normal μ = 2017, σ = 1098 0.14 0.54*

exponential λ = 4.96x10-4 0.27 0.03

lognormal μ = 7.25, σ = 1.18 0.16 0.00

power law α = 1.24, xmin = 30 0.41 0.01

1.9 6 power-law tail α = 6.25, xmin =
2632

0.17 0.50a

7. Sites > 70% and > 90% Early
Archaic Points

1.5 8 normal μ = 1884, σ = 906 0.22 0.36*

exponential λ = 5.3x10-4 0.35 0.05

lognormal μ = 7.41, σ = 0.54 0.18 0.70*

power law α = 1.90, xmin =
546

0.39 0.02

(Continued)
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Table 2. (Continued)

settlement system dataset total site
area (ha)

sites statistical
model

MLE parameter
values

KS D p

1.3 6 power-law tail α = 4.00, xmin =
1500

0.21 0.43a

Titicaca Basin Huenque
Middle Archaic

8. sites > 50% Middle Archaic points 8.0 20 normal μ = 4040, σ = 4702 0.21 0.02

exponential λ = 2.48x10-4 0.12 0.84*

lognormal μ = 7.61, σ = 1.34 0.14 0.43*

power law α = 1.31, xmin = 94 0.29 0.02

5.7 6 power-law tail α = 2.98, xmin =
5479

0.10 0.87*

9. sites > 70% and > 90% Middle
Archaic points

3.8 8 normal μ = 4757, σ = 6485 0.31 0.04

exponential λ = 2.10x10-4 0.34 0.06

lognormal μ = 7.33, σ = 1.72 0.22 0.35*

power law α = 1.36, xmin = 94 0.24 0.41*

3.6 4 power-law tail α = 2.76, xmin =
4109

0.19 0.81*

Titicaca Basin Ilave Early
Archaic

10. sites > 50% Early Archaic points 1.4 9 normal μ = 1527, σ = 1362 0.19 0.48*

exponential λ = 6.55x10-4 0.10 1.00*

lognormal μ = 6.71, σ = 1.41 0.18 0.55*

power law α = 1.27, xmin = 30 0.35 0.08

0.9 3 power-law tail α = 3.17, xmin =
2201

0.13 0.71a

11. sites > 70% and > 90% Early
Archaic Points

0.7 3 normal μ = 2375, σ = 1769 0.23 0.86*

exponential λ = 4.21x10-4 0.27 0.85*

lognormal μ = 7.28, σ = 1.15 0.31 0.50*

power law α = 1.63, xmin =
300

0.38 0.30*

power-law tail α = 1.63, xmin =
300

0.38 0.30*

Titicaca Basin Huenque Early
Archaic

12. sites > 50% Early Archaic points 6.1 19 normal μ = 3200, σ = 2727 0.18 0.12*

exponential λ = 3.12x10-4 0.11 0.87*

lognormal μ = 7.57, σ = 1.18 0.15 0.27*

power law α = 1.34, xmin =
121

0.34 0.00

2.5 3 power-law tail α = 6.60, xmin =
7477

0.13 0.65a

13. sites > 70% Early Archaic points 3.7 13 normal μ = 2883, σ = 2933 0.21 0.11*

exponential λ = 3.47x10-4 0.12 0.94*

lognormal μ = 7.31, σ = 1.30 0.12 0.86*

power law α = 1.40, xmin =
121

0.32 0.00

0.3 6 power-law tail α = 2.67, xmin =
2592

0.18 0.49*

14. sites > 90% Early Archaic points 0.3 12 normal μ = 2907, σ = 3051 0.25 0.04

exponential λ = 3.44x10-4 0.17 0.67*

lognormal μ = 7.27, σ = 1.34 0.15 0.63*

(Continued)

Settlement-Size Scaling and Prehistoric Hunter-Gatherers

PLOS ONE | DOI:10.1371/journal.pone.0140127 November 4, 2015 17 / 25



imagine that preferential attachment to places on landscapes played an important role in
hunter-gatherer residential mobility decisions thus giving rise to heavy-tailed variation in the
differential accumulation of site occupation times and thus artifacts. Anthropologists have sug-
gested a variety of mechanisms by which humans become “attached” to places, including eco-
nomic and symbolic mechanisms [63–67]. We might therefore imagine that as hunter-
gatherers moved across landscapes to take advantage of seasonally available resources, they
preferentially reoccupied certain locations to access previously discarded materials, cultural
infrastructure, or cultural meaning. While most settlements would have experienced modest,
short-term occupation and material accumulation, some locations would have experienced
compounding occupation intensity that would have driven extreme material accumulation
over the long-term.

Table 2. (Continued)

settlement system dataset total site
area (ha)

sites statistical
model

MLE parameter
values

KS D p

power law α = 1.40, xmin =
121

0.30 0.00

0.3 9 power-law tail α = 1.90, xmin =
895

0.25 0.02

Jequetepeque Paijan 15. all sites with one or more Paijan-
diagnostic artifacts

254.6 126 normal μ = 20205, σ =
55992

0.36 0.00

exponential λ = 4.95x10-5 0.32 0.00

lognormal μ = 8.39, σ = 1.73 0.08 0.08

power law α = 1.26, xmin =
100

0.28 0.98a

238.7 53 power-law tail α = 1.87, xmin =
7209

0.06 0.97*

16. excluding sites with non-Paijan
artifacts

17.6 23 normal μ = 7674, σ = 6447 0.18 0.05

exponential λ = 1.30x10-4 0.14 0.47*

lognormal μ = 8.41, σ = 1.18 0.19 0.03

power law α = 1.40, xmin =
418

0.24 0.05

8.8 5 power-law tail α = 6.91, xmin =
15200

0.13 0.62a

17. excluding sites with ceramics 54.6 91 normal μ = 6005, σ =
11561

0.30 0.00

exponential λ = 1.67x10-4 0.23 0.00

lognormal μ = 7.79, σ = 1.40 0.08 0.15*

power law α = 1.31, xmin =
100

0.29 0.00

42.7 27 power-law tail α = 2.42, xmin =
6250

0.10 0.32*

* Plausible models at p > 0.10.
aIn some cases, the methods described above yield a p-value in the range of statistical plausibility but a power-law scaling parameter that exceeds the

upper limit of acceptable values (α � 3). Such values are theoretically problematic because they describe distributions that are not scale invariant and

thus converge on non-power law distributions [15]. Moreover, such values are greater than those found to describe settlement hierarchy in the empirical

cases of complex societies. For these reasons, an otherwise statistically plausible power-law model is rejected if the scaling parameter is greater than or

equal to three.

doi:10.1371/journal.pone.0140127.t002
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Importantly, this model does not predict power-law scaling in site-area variation and is thus
consistent with the rejection of power-law scaling in the empirical analysis presented here. We
might further consider the type of site-area variation that this preferential attachment model
does predict. As a first approximation, the range of variation is expected to be more con-
strained than that of power-law variation. This is because temporally distributed reoccupations
of locations entail some degree of spatial overlap thus limiting a site's areal growth rate relative
to its quantitative growth rate (i.e., artifact accumulation). Of the continuous statistical distri-
butions considered in this analysis, normal, exponential, and lognormal models fit this general
expectation of comparatively low dispersion. Furthermore, we can rule out normal distribution
models given that site areas cannot be negative by definition. To decide between exponential
and lognormal models, we consider site-formation processes in light of the generic processes
known to give rise to exponential and lognormal structure. Site area is expected to vary as a
function of co-resident group size, spatial non-overlap between sequential occupations, and
the spatial dispersion of cultural materials in systemic and taphonomic contexts. Without addi-
tional theoretical guidance as to which of these factors are most important, we might simply
consider a null expectation in which each variable randomly contributes to site-area variation.
Because lognormal distributions are the product of many independent random events [55], we
suggest lognormal site-area variation could be expected under the model of preferential attach-
ment. Given the empirical results of this study, we currently cannot rule out this expectation of
the preferential attachment model. However, it is important to note that exponential models
also present plausible fits to the empirical data. Additional research is needed to determine
which statistical model offers a better fit and whether or not there is a theoretical basis for
exponential variation in site areas.

Implications of the Working Model
The preferential attachment model of forager mobility holds a number of anthropological
implications, and we briefly consider several here including implications for archaeological site
formation, settlement-size variation in diverse environmental contexts, and self-organization
of settlement-size hierarchies in human societies. Regarding the structure of site formation, the
model suggests that artifact accumulation among the sites of a given hunter-gatherer settle-
ment system would have been distributed through time such that that largest sites would be
expected to exhibit occupation spans that approach the temporal span of the settlement sys-
tem's existence. For many archaeologically visible hunter-gatherer systems, such spans may be
on the order of centuries to millennia. This expectation follows from the assumption of prefer-
ential attachment, which implies that the attractiveness of a site is partially a function of the
intensity of previous occupations. Thus, even a chance resource encounter at some otherwise
unexceptional location on the landscape could lock hunter-gatherers into persistent reoccupa-
tion over the long-term. Importantly, such long-term uses of highly localized sites can be
expected even in the absence of highly localized natural resources such as caves, rockshelters,
or springs. We should therefore expect chronological analyses of large open-air hunter-gath-
erer sites to produce decadal- to millennial-scale occupation spans even in the absence of resi-
dential sedentism or spatially localized natural resources.

The preferential attachment model also holds implications for settlement-size variation
across environmental contexts. First, because all anatomically modern hunter-gatherers relied
on material and symbolic culture, we should expect that preferential attachment to places
applied to all hunter-gatherers in all environmental contexts. Thus, we should expect to
observe heavy-tailed settlement-size variation across environmental contexts. Nonetheless, the
center of mass of site-size variation should vary across environmental contexts. Resource
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richness should negatively predict the strength of preferential attachment and thus the scaling
exponent of power-law models for a given set of settlement systems. This is because resource
poor environments would tend to exert greater pressure on resource recycling behavior and
thus the reocupation of sites.

Last, the preferential attachment model offers potential insights into how settlement-size
hierarchies may have self-organized in human societies through a common behavioral process
that transcends economic extremes. When populations were low, as is often the case for
hunter-gatherer societies, co-resident population size at the largest settlements would have
been restricted, thus limiting site growth in areal extent relative to growth in material

Table 3. Results of AIC and AIC weight analysis.

case metric constraints plausible statistical models AIC AIC weight

Ilave Late Archaic site area sites > 70% Late Archaic points exponential 626 0.89*

lognormal 630 0.11*

Rio Huenque Late Archaic site area sites > 50% Late Archaic points normal 686 0.06

exponential 677 0.63*

lognormal 680 0.31*

sites > 70% Late Archaic points normal 416 0.08

exponential 410 0.61*

lognormal 412 0.31*

sites > 90% Late Archaic points normal 256 0.02

exponential 244 0.39*

lognormal 245 0.33*

power law 246 0.26*

Ilave Basin Middle Archaic site area sites > 70% and > 90%Middle Archaic points normal 135.6 0.46*

lognormal 135.3 0.54*

Rio Huenque Middle Archaic site area sites > 50% Middle Archaic points exponential 374 0.72*

lognormal 377 0.28*

sites > 70% and > 90% Middle Archaic points lognormal 153 0.38*

power law 152 0.62*

Ilave Basin Early Archaic site area sites > 50% Early Archaic points normal 159 0.06

exponential 152 0.77*

lognormal 157 0.17*

sites > 70% and > 90%Early Archaic points normal 57.5 0.16*

exponential 55.6 0.32*

lognormal 57.1 0.18*

power law 54.4 0.34*

Rio Huenque Early Archaic site area sites > 50% Early Archaic points normal 359 0.04

exponential 347 0.75*

lognormal 352 0.21*

sites > 70% Early Archaic points normal 249 0.01

exponential 235 0.71*

lognormal 238 0.28*

sites > 90% Early Archaic points exponential 217 0.75*

lognormal 220 0.25*

*Favored results at w > 0.10. The analysis only includes cases where two or more statistical models were found to be statistically plausible (see Table 2).

Multiple plausible models were not observed in the discrete data cases (see Table 1) and are therefore not included in this table.

doi:10.1371/journal.pone.0140127.t003
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accumulation. In other words, for low-density hunter-gatherer populations, settlement-size
scaling would have been a property of preferential attachment among settlements with largely
asynchronous occupation. Conversely, preferential attachment could be expected to generate
different site-formation results when population densities are high, as is often the case for
agrarian and industrial societies. When individuals make residential moves in these cases,
albeit with lower frequency than hunter-gatherers, preferential attachment to places would
tend to result in multi-resident, multi-family occupations of settlements. These co-resident
populations would have required a proportionate amount of space, thus material accumula-
tions would have expanded spatially at a rate that was commensurate with the rate of quantita-
tive accumulation. For high-density populations, settlement-size scaling would therefore have

Fig 7. Results of power analysis for site-area (continuous) data. The analysis shows that given the
sample sizes and MLEmodel-parameter values, (a) the probability of failing to identify power-law structure
when power-law structure is present (type II error) is unlikely and (b) the probability of spuriously identifying
power-law structure given normal, exponential, or lognormal data (type I error) is also unlikely. See also S2
Table.

doi:10.1371/journal.pone.0140127.g007
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been a property of preferential attachment among settlements with largely synchronous occu-
pation, as is the case among most modern societies.

To the extent that this preferential attachment model is viable, it would help us understand
the similarities and differences in settlement-size variation observed in mobile and sedentary
societies. In turn, it tentatively suggests a trajectory for the self-organization of settlement-size
hierarchies in human societies. As hunter-gatherer populations grew, land use intensified, and
residential mobility decreased, asynchronous settlement-size scaling structure would have
gradually given way to the synchronous scaling structure that characterizes settlement-size
hierarchies in settled agrarian societies. If so, incipient forms of hunter-gatherer settlement-
size hierarchy would have created a context for the self-organization of socioeconomic com-
plexity including the hierarchical structure of political and economic organization. This cul-
tural trajectory differs from previous thinking, which has tended to see settlement-size
hierarchy as a distinctive feature of hierarchical, state-organized, and industrial societies
[17,22,23]. The model proposed here does not undermine previous models that use complex
socioeconomic behaviors such as agriculture, manufacturing, and warfare to explain settle-
ment-size hierarchy (e.g., [11,19,68]), but it does suggest that such complex behaviors may be
proximate to more fundamental socioeconomic behaviors that existed among states and
hunter-gatherer societies alike (see also [34] for a similar conclusion). We suggest that the
shared behavior spanning economic extremes may be residential mobility guided by preferen-
tial attachment to places.

In conclusion, this study found that prehistoric hunter-gatherer settlement systems of the
NewWorld exhibit heavy-tailed statistical structure that is consistent with power-law scaling.
We have interpreted this archaeological variation to reflect extreme variation in the occupation
spans of hunter-gatherer sites. We speculate that the statistical structure may have been a self-
organized property of preferential attachment behavior whereby foraging populations prefer-
entially occupied certain locations on the landscape to take advantage of material culture or
symbolic resources. In turn, the behavior and its macro-scale outcomes may have laid a struc-
tural foundation for self-organized settlement hierarchies in subsequent times. We emphasize
that this working model simply suggests an analytical starting point. Alternative models such
as post-depositional process models (e.g., [69]) require additional consideration. We hope that
these analytical findings and theoretical considerations stimulate additional efforts to link
hunter-gatherer behavior to the observed structural properties of human settlement patterns—
patterns that fundamentally shape the organization and dynamics of human societies.
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