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Superspreaders, infected individuals who result in an outsized
number of secondary cases, are believed to underlie a significant
fraction of total SARS-CoV-2 transmission. Here, we combine em-
pirical observations of SARS-CoV and SARS-CoV-2 transmission and
extreme value statistics to show that the distribution of secondary
cases is consistent with being fat-tailed, implying that large super-
spreading events are extremal, yet probable, occurrences. We inte-
grate these results with interaction-based network models of disease
transmission and show that superspreading, when it is fat-tailed,
leads to pronounced transmission by increasing dispersion. Our
findings indicate that large superspreading events should be the
targets of interventions that minimize tail exposure.
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Superspreading has been recognized as an important phe-
nomenon arising from heterogeneity in individual disease

transmission patterns (1). The role of superspreading as a
significant source of disease transmission has been appreciated in
outbreaks of measles, influenza, rubella, smallpox, Ebola, mon-
keypox, SARS, and SARS-CoV-2 (1, 2). A basic definition of an
nth-percentile superspreading event (SSE) has been proposed to be
any infected individual who infects more people than does the nth-
percentile of other infected individuals (1). Hence, if the number of
secondary cases is randomly distributed, then for large n, SSEs can
be viewed as right-tail events. A natural language for understanding
the tail events of random distributions is extreme value theory,
which has been applied to contexts as diverse as insurance (3) and
contagious diseases (4). Here, we apply extreme value theory to
empirical data on superspreading in order to gain insight into this
critical phenomenon impacting the current COVID-19 pandemic.

Results and Discussion
We view the number of secondary cases resulting directly from
an index case of a disease to be a random variable, Z. We also
view the individual reproductive number, v, to be a random vari-
able representing the expected number of secondary cases caused
by an infected individual. Seminal work (1) has suggested that, for
SARS-CoV, Z follows a negative binomial distribution, Z∼nega-
tive binomial(R0,k), where R0 is the basic reproduction number, k
is the dispersion parameter quantifying variation in transmission,
and the mean and variance of Z are R0 and R0(1+R0/k), re-
spectively. Assuming that stochastic effects in transmission are
modeled by a Poisson process, v is gamma-distributed and 1/k
effectively measures the “flatness” of the distribution of v. Dif-
ferent assumptions of the branching process can be modeled, and
we focus on the foregoing assumptions for simplicity (1). For
SARS-CoV, k has been estimated to be ∼0.16 (1); for SARS-CoV-
2, k has been estimated to be ∼0.1 to 0.6 (2, 5). Importantly, if
Z∼negative binomial(R0,k), then for k ≤ 1, Z has an exponen-
tial tail (6). This means that the occurrence of SSEs has a
probability that decreases exponentially as Z increases.
Tails are exceptionally significant in extreme value theory, where

they determine how rare extreme events are, how the central limit
theorem is generalized, and what distribution the scaled maxima of
samples follow. We were therefore interested to determine
whether the empirically observed distribution of Z for SARS-

CoV and SARS-CoV-2 exhibited an exponential tail. We
searched the scientific literature for global accounts of SSEs, in
which single cases resulted in numbers of secondary cases
greater than R0, estimated to be ∼3 to 6 for both coronaviruses
(1, 7). To broadly sample the right tail, we focused on SSEs
resulting in >6 secondary cases, and as data on SSEs are sparse,
perhaps due in part to a lack of data sharing, we pooled data for
SARS-CoV and SARS-CoV-2. Moreover, to avoid higher-
order transmission obfuscating the cases generated directly by
the index case, we ruled out SSEs where a single infected in-
dividual led to a cluster of subsequent infections, but the sub-
sequent infections were not indicated to be secondary cases.
Curating a total of 60 SSEs in this way, we found 45 SSEs as-

sociated with SARS-CoV-2 and 15 SSEs associated with SARS-
CoV (Fig. 1 A and B). An additional 14 SSEs were documented in
news sources and not scientific studies, and their inclusion does
not significantly change the following results, which also hold
when accounting for sources of bias (below). Details of the dataset
are summarized in Dataset S1.
Several striking observations emerge from the data. While the

SSEs surveyed indicated secondary case numbers ranging from
∼6 in a family-spreading incident in Singapore to 187 in an
apartment in Hong Kong, many SSEs exhibited significantly
more secondary cases than R0 ≈ 3 to 6, with the conditional
sample mean being 19.7 cases (Fig. 1 A and B).
We next examined the tail behavior of Z using inference tools

from extreme value theory. We found that the tail of Z, as
sampled by our list of SSEs, {Zi}, was inconsistent with expo-
nential decay. Instead, we found that the tail of Z is consistent
with fat-tail behavior using three complementary methods: 1) a
Zipf plot; 2) a meplot; and 3) statistical estimators of the tail
index, which collectively suggest a power-law scaling of the form
Pr(Z > t)∼t−α for large t, with α between 1 and 2 (Fig. 1 C–E and
SI Appendix, Methods). Equivalently, this observation indicates
that the tails of Z—as quantified by the threshold exceedance
values {Zi – ujZi ≥ u}—can be described by the generalized
Pareto distribution, with corresponding tail index ξ = 1/α be-
tween 0.5 and 1. That ξ ≤ 1 is significant, since all moments
higher than 1/ξ diverge for a generalized Pareto distribution (3).
Our finding that the tail of Z is fat has implications not only

for superspreading, but also for modeling the effects of individ-
ual variation on disease transmission. First, the fat tail of Z
makes the distribution of Z inconsistent with a negative binomial
distribution, and the consistency of the tail with a generalized
Pareto distribution suggests that it arises from branching processes
in which the time to infection, instead of v, is gamma-distributed
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(so that the tails of Z correspond to an exponential-gamma
mixture); this prediction is consistent with studies that have fit-
ted serial intervals to gamma distributions (8, 9). Second, since the
second moment of Z diverges if α < 2, the occurrence of SSEs
suggests that measuring variances of empirical samples of Z can be
misleading. Third, fat-tailed distributions generate extreme risk,
and superspreading should be mitigated by measures that reduce
tail events instead of focusing on the bulk of the distribution.
A complementary way in which we may interpret superspreading

is by assuming that SSEs arise not only as right-tail samples of Z, but
also as the maxima of many samples of the entire distribution of Z.
The consistency of this viewpoint with the definition of SSEs as
right-tail samples of Z is given by an important theorem in extreme
value theory relating threshold exceedances to extreme value dis-
tributions (3). Indeed, SSEs often represent the maxima of values of
Z observed in transmission clusters. In this case, the Fisher–Tippett–
Gnedenko theorem asserts that distributions of the maximum of
large numbers of samples converge to either the Gumbel, Fréchet,
or Weibull distributions if the tails of the underlying distribution
are exponentially decaying, fat, or thin (faster-than-exponential)
and finite, respectively. Supporting the view of SSEs as maxima of
ensembles of spreading events, we found that the distribution of
observed SSEs was consistent with the Fréchet distribution but
inconsistent with the Gumbel and Weibull distributions, as mea-
sured by maximum-likelihood fitting and one-sample Kolmogorov–
Smirnov and χ2 goodness-of-fit tests at the 5% significance level
(Fig. 1 F and G and SI Appendix, Methods).
We next verified that our results were robust to noisy and in-

complete data (4). To account for noise, we generated 10,000 copies
of the data, where each copy involved multiplying the original data by

uniform random variables in [0.5,1.5]—a range that we anticipate to
accommodate errors in testing and reporting—and recomputed ξ̂
according to the Hill estimator (SI Appendix, Methods). To ac-
count for incomplete data, a random number of observations
between 1 and 10 was randomly removed, according to uniform
distributions, for 10,000 copies of the data, and ξ̂ was recom-
puted. The variation in ξ̂ is summarized in Fig. 1H. Notably, we
observed that ξ̂ was always greater than 0.5, so that the second
and higher moments of Z diverge.
In a complementary analysis, we tested for sources of bias

in the data, which could arise from variations in testing and
reporting. As null models, we tested whether the data could
be consistent with the maxima of samples from a negative
binomial distribution with (R0,k) randomly sampled in
[0,6] × [0,1] and in which up to 40% of entries were merged
or imputed by the mean. Statistical tests of 10,000 copies of
simulated data indicated that these sources of variation
cannot explain the observed SSEs, which instead favor an
underlying fat-tailed distribution despite this variation (Fig. 1I).
Moreover, we repeated our analyses after adding 14 SSEs from
news sources and for a contact-tracing dataset of 1,347 secondary
cases arising from 5,165 cases in South Korea (10) (Dataset S2).
We found that both datasets exhibited fat-tailed behavior, with
inferred tail indices (ξ ≈ 0.3 to 0.8) quantitatively similar to those
found above (Fig. 1 J and K).
Combining these results with modeling can be timely for

informing interventions in the current pandemic. As a proof of
concept, we considered a network model of transmission which
fine-grains an SEIR model (Fig. 2A). Here, 1,000 individuals
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Fig. 1. SARS-CoV and SARS-CoV-2 SSEs correspond to fat tails. (A) Histogram of Z for 60 SSEs. (B) Subsample of 20 diverse SARS-CoV and SARS-CoV-2 SSEs. *See
Dataset S1 for details. (C) Zipf plots of SSEs (blue) and 10,000 samples of a negative binomial distribution with parameters (R0,k) = (3,0.1), conditioned on Z > 6
(yellow). (D) Meplots corresponding to C. (E) Plots of ξ̂, the Hill estimator for ξ, for the samples in C. (F) Different extreme value distribution fits to the distribution
of SSEs. (G) One-sample Kolmogorov–Smirnov and χ2 goodness-of-fit test results for the fits in F. (H) Robustness of results, accounting for noise (Left) and in-
complete data (Right). (I) Inconsistency of the maxima of 10,000 samples of a negative binomial distribution (yellow) with the SSEs in A, accounting for variability
in (R0,k) and data merging and imputation, in contrast to the maxima of 30 samples from a fat-tailed (Fréchet) distribution (blue) with tail parameter α = 1.7 and
mean R0 = 3. The numbers of samples in each case were determined so that the sample mean of maxima is equal to the sample mean from A. (J–K) Generality of
inferred ξ to 14 additional SSEs from news sources (J) and a dataset of 1,347 secondary cases arising from 5,165 primary cases in South Korea (K) (Dataset S2).
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(nodes) each transition between being susceptible (S), exposed
(E), infected (I), and recovered or dead (R) with rates S

��!bSE E,
E�!dE I, and I�!gI R, as detailed further in Dataset S3, and rates
were chosen with R0 = 3 and a characteristic incubation time of
5 days for SARS-CoV-2 (7). We considered two different graph

models with identical mean connectivity (m = 10): Barabási–
Albert (BA) and Watts–Strogatz (WS), which possess fat-tailed
(α = 2) and exponential-tailed degree distributions, respectively.
As a simple intervention strategy, we considered node removals
in which a fraction φ of all nodes is removed starting from those
with largest degree. We found that, when the degree threshold
for node removals was chosen to yield the same effective value of
R0 in both models, the BA model resulted in greater transmis-
sion (Fig. 2 B and C), indicating that a fat-tailed degree distri-
bution contributes to transmission by increasing dispersion. In
contrast, for the same degree threshold, we found that isolating
all possible superspreaders—defined here as individuals with
degree greater than 10, corresponding to the 80th percentile in
the BA model and the 50th percentile in the WS model—suffices
to decrease R0 below 1 and control the pandemic for the BA, but
not WS, model (Fig. 2 D and E). Intriguingly, in both models,
stochastic extinction events lead to smaller infected fractions
than those predicted by a well-mixed model (Fig. 2 B–E). These
results indicate that transmission is especially pronounced when
superspreading is fat-tailed and hint at more detailed models of
interventions focused on tail events. We anticipate future models
to consider not only heterogeneity in network interactions, but
also in infectivity and susceptibility (11).
In summary, we have provided evidence that the distribution of

secondary cases, Z, is fat-tailed with tail exponent α ∈ [1,2]. The
fat-tailed nature of Z indicates that SSEs have an outsized con-
tribution to overall transmission and should be the targets of in-
terventions that minimize tail exposure, for instance, by preventing
large gatherings of susceptible individuals or immunizing select
individuals (12). Extreme value theory offers a framework for
modeling superspreaders, and we anticipate that using the tools of
this theory can, as illustrated here, better allow us to understand
the effects of superspreading on the ongoing pandemic.

Data Availability. All analysis code are available at GitHub,
https://github.com/felixjwong/superspreaders. All study data are
included in the article and SI Appendix.
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Fig. 2. Forward modeling of intervention strategies. (A) State transitions in
a fine-grained network model of disease transmission. (B–E) Predicted total
infected fraction for an intervention strategy that isolates a fraction φ of all
individuals, namely those with degree greater than the threshold number,
and yielding decreased mean connectivity of d and effective basic repro-
duction number of R0. Here, R0 depends on the coefficient of variation of
the degree distribution, as detailed in Dataset S3. Trajectories from 100
simulations for BA random graphs (B and D) and WS random graphs (C and
E) and their averages are shown, compared to the theoretical predictions for
a well-mixed model.
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