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Quarantine fatigue thins fat-tailed coronavirus impacts in U.S. cities by making epidemics 
inevitable 
 
Place-based measures of contact rate distribution 
 
To generate our contact rate distributions, we rely on cell phone data from the Safegraph weekly 
patterns dataset, which aggregates data from 45 million mobile devices in the United States, and 
visits to 6 million ‘Points-of-Interest’ (POIs). We build contact rate distributions based on visits to 
each POI in the dataset as follows:  

Contact Rate = ADV*CR*DF*s 
 
ADV is the average daily visitors to the point of interest during the week. CR is the contact radius, a 
proxy for the crowdedness of a POI, defined as some radius within which transmission could occur, 
expressed as a fraction of the POI’s square footage. In practice we use 10 and 20 feet and find 
similar results. DF is the median dwell time in a given POI expressed as a fraction of the hours a POI 
is open, and s is a scaling factor that scales up to the population size given the fraction of devices 
observed by Safegraph. This effectively makes our contact rate equivalent to the expected number 
of people that would come within a certain radius of a visitor to a given POI during the week in 
question, assuming visitors are equally likely to go anywhere within the POI at any time that it is 
open. Thus, the uniform mixing assumption of SEIR models holds within POIs in our model, but our 
approach allows for more complex contact patterns across POIs within a CBSA.   
 
To generate a complete ‘place-based contact rate distribution’, we also need to account for contacts 
within the home, which have shown to be an important source of transmission (Lee et al. 2020). 
Using the Safegraph social distancing dataset, we calculate the average fraction of devices that 
remain completely at home for a day during the week. We then make that fraction of the POIs in our 
distribution ‘homes’ and assign them a contact rate of the average household size in the CBSA.  
We then calculate the sample mean and variance of these distributions, and estimate the shape 
parameter of the tail of the distribution using maximum likelihood on the upper 50th percentile of 
the POI distribution (Grimshaw, 1993). We confirm these results using the mean-excess plots to 
estimate the shape parameter (Ghosh and Resnick 2010). We also do not estimate shape 
parameters for CBSAs with very few POIs (less than 21). We do this for 34 weeks for nearly 2,300 
CBSAs resulting in parameters for more than 75,000 distributions.   
 
Correlations between contact rate parameters and epidemiological dynamics 
 
We run regressions using the following specification:  
 

𝑌𝑖,𝑡+1 = 𝛽1𝑌𝑖,𝑡 + 𝛽2𝛺𝑖,𝑡 + 𝛽3𝑌𝑖,𝑡 ∗ 𝛺𝑖,𝑡 + 𝛽4𝑋𝑖𝑡 + 𝜇𝑖 + 𝛾𝑡 

Y is the log of the outcome of interest, either Covid-19 cases or deaths per 100,000 population, in 
CBSA i during week t. For Covid-19 deaths and case data, we use the Johns Hopkins Covid 19 data 
repository from https://github.com/CSSEGISandData/COVID-19 (Dong, Du, and Gardner 2020). 
Given the large number of zeroes, we use the inverse hyperbolic sine transformation. 𝛺 is a vector 
of variables describing the distribution of the log of the contact rate, including the mean, variance, 
and shape parameters. We also include these contact rate variables interacted with the lagged case 
or death rate, which tells us how their marginal effects change as cases/deaths increase. 𝜇𝑖and 𝛾𝑡 
are CBSA and week fixed effects, and 𝑋𝑖𝑡 is a vector of control variables, including the fraction of 

https://github.com/CSSEGISandData/COVID-19


devices observed in a CBSA relative to the months before the epidemic. Regressions are also 
weighted by CBSA population.  
 
All regressions have high goodness-of-fit as measured by R squared, especially the regressions on 
case rates, and the coefficients on our contact rate distribution variables are highly significant, 
showing that changes in the mean, variance, and tail behavior of our constructed contact rate all 
have predictive power.  
 
These results are robust to changing the size of the lead on the outcome variable, alternative 
definitions of the contact radius, as well as breaking out stay at home behavior and household size 
separately, and constructing a contact rate distribution based solely on visits to POIs outside the 
home. 
 
Stochastic SIR model with fat-tailed contact rates 

To determine if the impacts of the outbreak are fat-tailed, we use a stochastic variant of the 

standard SIR framework, which tracks the numbers of susceptible, infected, and recovered 

individuals over the course of an infectious disease outbreak (Kermack and McKendrick 1927, 

Hethcote 2000): 

𝑑𝑆(𝑡) = −𝛽𝐶(𝑡)𝐼(𝑡)𝑆(𝑡)𝑑𝑡                                                                  (1) 

𝑑𝐼(𝑡) = [𝛽𝐶(𝑡)𝐼(𝑡)𝑆(𝑡) −
𝛾

1 − 𝑚
𝐼(𝑡)] 𝑑𝑡                                                           (2) 

𝑑𝑅(𝑡) = 𝛾𝐼(𝑡)𝑑𝑡                                                                            (3) 

where 𝐼(𝑡), 𝑆(𝑡), and 𝑅(𝑡) are the proportion of the total population 𝑁 that is infected, susceptible, 

and recovered respectively and 
𝛾𝑚

1−𝑚
𝐼(𝑡) is the daily change in the percent of the population that 

dies due to COVID-19.  Assuming frequency dependent transmission, the per capita infectiveness of 
COVID-19 is 𝛽𝐶(𝑡) which captures both the natural infectiveness of the disease, 𝛽, and the rate of 
contact between individuals in a population 𝐶(𝑡).   

The contact rate is a stochastic variable reflecting the unpredictability of contacts between 
individuals captured in our contact rate distributions. While human behavior makes contact rates 
inherently unpredictable (Sims et al. 2013), our place-based contact rate measures also highlight 
how a CBSA’s mix of businesses and building stock also enable or discourage variability in contact 
rates.  For example, a CBSA with more superspreader points of interest such as full-service 
restaurants, fitness centers, and cafes (Chang et al. 2020) will also exhibit greater variability in 
contacts between individuals. To convert the place-based measure of contact rate to a contact rate 
compatible with our compartmental model, we assume the contact rate in CBSA 𝑖,𝐶𝑖(𝑡), is the 

expected contacts per person in CBSA 𝑖: 𝐶𝑖(𝑡) =
1

2
[

𝜇𝑖,𝑡
2 +𝑣𝑖,𝑡

𝜇𝑖,𝑡
− 1] where 𝜇𝑖,𝑡 and 𝑣𝑖,𝑡 are the mean and 

variance of the place-based contact rate distribution respectively.  

We use this time-series of contact rates to estimate a stochastic volatility model for contact rates for 
the four most populous U.S. cities. To inform the specification of our model, we first performed an 
augmented Dickey-Fuller unit root test to determine whether the time series of contact rates is a 
random walk or trend stationary. For all 4 CBSAs, we fail to reject the null hypothesis of a unit root 
thus ruling out a variety of mean-reverting processes. Based on this finding:   

𝑑𝐶𝑖 = 𝛼𝑖𝐶𝑖𝑑𝑡 + 𝜎𝑖(𝑡)𝐶𝑖𝑑𝑧1𝑖                                                                      (4) 



where 𝛼𝑖 is a drift term, 𝜎𝑖(𝑡) is a diffusion or variance term, and 𝑑𝑧𝑖1 is the increment of a standard 
Wiener process which are independent across CBSA. 𝛼𝑖 > 0 indicates that, on average, the contact 
rate is rising over time in CBSA i. More unpredictable human behavior would manifest as a more 
variable contact rate and a larger value for 𝜎𝑖(𝑡). If 𝜎𝑖(𝑡) were a fixed parameter, contact rates 
would be log-normally distributed leading to thick-tailed contact rates, 𝜉 = 0. However, all 4 CBSAs 
exhibited fat tails (𝜉 > 0) throughout the 34 weeks of our study. To allow for fat tails, the diffusion 
or volatility parameter is also stochastic and follows an arithmetic Ornstein-Uhlenbeck (or AR(1)) 
process: 

𝑑𝜎𝑖 = 𝜃𝑖(𝜎̅𝑖 − 𝜎𝑖)𝑑𝑡 + 𝜅𝑖𝑑𝑧𝑖2                                                                     (5) 

where 𝜎̅𝑖 is the long-run average level of percent volatility in contact rates, 𝜃𝑖 is the speed of mean 
reversion, 𝜅𝑖is the volatility in the percent volatility, and 𝑑𝑧𝑖2 is a second independent Wiener 
process. The model in equations (4) and (5) ensures 𝐶𝑖(𝑡) will be fat-tailed with finite variance and 
can exhibit infinite variance with certain parameter combinations (Stein and Stein 1991). Unlike 
stochastic SIR models with thin tails, the stochastic SIR model in equations (1)-(5) may not 
converge to its deterministic counterpart, because the Central Limit Theorem fails with infinite 
moments (Fukui and Fukuwara 2020).        

We estimate the drift term and the long-run average level of percent volatility as: 

𝛼𝑖̂ =
1

𝑁
∑ 𝑙𝑜𝑔 (

𝐶𝑡𝑖

𝐶𝑡−1𝑖
)

𝑁

𝑡=1

+
𝜎̂𝑖

2

2
 

𝜎̂𝑖 = √
1

𝑁 − 1
∑ (𝑙𝑜𝑔 (

𝐶𝑡𝑖

𝐶𝑡−1𝑖
) −

1

𝑁
∑ 𝑙𝑜𝑔 (

𝐶𝑡𝑖

𝐶𝑡−1𝑖
)

𝑁

𝑡=1

)

2𝑁

𝑡=1

 

Our estimates for the drift term range from 0.019 in Chicago to 0.002 in New York City. Our 
estimates for the long-run average level of percent volatility range from 0.21 in New York City to 
0.04 in Houston. Together, these parameter values provide an indication of the degree of 
quarantine fatigue and unpredictability in each city. For example, contact rates in New York City 
increased 1.9% each week with a 21% volatility around this trend.  

Our weekly contact rate data do not provide enough observations to confidently estimate an AR(1) 
model needed to recover estimates of 𝜃𝑖 and 𝜅𝑖.  However, the relationship between these 
parameters and results from the augmented Dickey-Fuller test give us several clues about their 
relative magnitude.  The unconditional standard deviation of volatility in our model is given by 
𝜅𝑖/(2𝜃𝑖)2.  Thus, small values of 𝜅𝑖 can have a large effect on the data generating process if the 
speed of mean reversion is low.  Conversely, large values of 𝜅𝑖can have a small effect on the data 

generating process if the speed of mean reversion is fast. In each CBSA, we set 𝜅𝑖 =
1

2
𝜎̅𝑖. The results 

of our augmented Dickey-Fuller test suggest 𝜃𝑖is relatively large to ensure the random walk 

properties of the data are preserved. Given 𝜅𝑖 =
1

2
𝜎̅𝑖, we select values for 𝜃𝑖 in each CBSA that 

ensures consistent rejection of the null hypothesis of a unit root. These values imply that the half-
life of a volatility shock ranges from 2 weeks (𝜃𝑖=19.22) in New York City to 6 weeks (𝜃𝑖=3.82) in 
Houston. Our parameter values imply that the unconditional standard deviation of volatility ranges 
from 0.02 in New York City (8% of its mean) to 0.008 in Houston (18% of its mean). Our results do 
not qualitatively change under various combinations of 𝜃𝑖 and 𝜅𝑖values that results in rejection of 
the unit root null hypothesis.         



We use weekly case counts for each of the 4 CBSAs to estimate the epidemiological parameters 𝛽𝑖, 
𝛾𝑖 , and 𝑚𝑖 that minimize the sum of squared errors between the weekly observed case counts in a 
CBSA and the expected path of 𝐼𝑖(𝑡) for that CBSA over a period of 34 weeks. For Covid-19 deaths 
and case data, we use the Johns Hopkins Covid 19 data repository from 
https://github.com/CSSEGISandData/COVID-19 (Dong, Du, and Gardner 2020).  

We then perform 100,000 simulations of the fitted stochastic SIR model using simbyEuler in 
Matlab. To alleviate concerns about under reporting of cases early in the outbreak, we set the initial 
condition for the simulation equal to the week where the percent infected in a CBSA first exceeds 
0.0005. This initial condition is as early as March 23, 2020 (New York City) and as late as April 13, 
2020 (Houston). We then calculate the cumulative sum of cases and deaths for each simulation as a 
proxies for the damages incurred by COVID-19. In each week, we fit a GPD to the 100,000 simulated 
cumulative cases and deaths yielding a weekly estimate of the thickness of the tails (shape 
parameter, 𝜉𝑖) for the cumulative impacts of COVID-19 in each CBSA. We use the gpfit.m routine in 
Matlab to fit the GPD to the cumulative cases.   

The stochastic epidemiological system in (1)-(5) has several attractive features.  First, it assumes 
the current proportion of the population infected, susceptible, and recovered is known but the 
future course of the outbreak is unknown due to the inability to predict future behaviors that 
determine the contact rate of a population.  This approach ensures that the fat tails we find are due 
to extreme draws in individual behavior due to factors such as superspreaders.  While uncertainty 
in current cases and deaths (i.e., state uncertainty) are important sources of uncertainty to consider 
when developing testing protocols, and other public health responses, they can lead to fat tails in 
cumulative cases due to intermittent changes in testing efforts and individual willingness to 
volunteer for testing.  For example, an “extreme draw” for COVID-19 cases would be expected prior 
to Thanksgiving and Christmas as individuals seek out testing as part of quarantine procedures 
prior to visiting family.      

Second, fat tails in the contact rate distribution also correspond to fat tails in the average number of 
secondary cases per infectious case which has been shown to exhibit fat tails (Wong and Collins 
2020).  Our stochastic SIR model implies the effective reproductive number is stochastic since 𝐶𝑖(𝑡) 

is stochastic:  𝑅𝑖
𝑒(𝑡) =

𝛽𝑖𝐶𝑖(𝑡)(1−𝑚𝑖)

𝛾𝑖
. Ito’s Lemma ensures that if 𝐶𝑖(𝑡) is fat-tailed, 𝑅𝑖

𝑒(𝑡) will also be 

fat-tailed. 

Third, unlike most stochastic epidemiological models that result in a single noisy wave of COVID-19 
cases (Allen 2008), the stochasticity in 𝐶(𝑡) leads to multiple waves of cases whose timing and 
magnitude are unpredictable.  A single peak in cases is not consistent with the vast majority of 
CBSAs in our study.   
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