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Abstract
A simple formula for estimating approximate values of return levels for sub-daily rainfall is
presented and tested. It was derived from a combination of simple mathematical principles,
approximations and fitted to 10 year return levels taken from intensity-duration-frequency (IDF)
curves representing 14 sites in Oslo. The formula was subsequently evaluated against IDF curves
from independent sites elsewhere in Norway. Since it only needs 24 h rain gauge data as input, it
can provide approximate estimates for the IDF curves used to describe sub-daily rainfall return
levels. In this respect, it can be considered as means of downscaling with respect to timescale, given
an approximate power-law dependency between temporal scales. One clear benefit with this
framework is that observational data is far more abundant for 24 h rain gauge records than for
sub-daily measurements. Furthermore, it does not assume stationarity, and is well-suited for
projecting IDF curves for a future climate.

1. Introduction: background

Sloping landscape sogged with heavy rainfall may
trigger land slides whereas buildings and infrastruc-
ture need to be designed to withstand heavy rainfall
that result in flash floods [1]. For this reason, it is
important to take into account the expected return
level for rainfall over a range of timescales, from
minutes to days. One way to quantify extreme rain-
fall amounts is through the probable maximum pre-
cipitation (PMP) which is defined as the theoretically
greatest depth of precipitation for a given duration that
is physically possible over a given size storm area at a
particular geographical location at a certain time of year
[2]. The PMP estimates have typically been used to
help getting the right dimensions for the construction
of water reservoirs, and traditional efforts to estim-
ate PMP have involved statistical and meteorological
approaches, both being associated with substantial
uncertainties. Another common way to incorporate
this type of information into the design, is to make
use of a set of so-called intensity-duration-frequency
(IDF) curves which provide the intensity as a func-
tion of both sub-daily duration as well as frequency

[3–5]. Each IDF curve represents the intensity as a
function of duration for one return period, and the
generation of such IDF curves may involve a num-
ber of differentmethods. Typically, the IDF curves are
fitted for each site and need long records with high-
quality sub-daily data (e.g. annual maximum values
for duration of minutes to days). It is problematic to
obtain IDF curves for sites were there is inadequate
sub-daily data coverage, and even for sites with reas-
onable data coverage the estimated return values for
the longest return periods are sensitive to the choice
of method [1]. The paucity of data, methodological
uncertainties, and the restriction of fitting to specific
rain gauge records have to some extent been overcome
for Norway with the development of spatially coher-
entmaps of return levels for 10min to daily precipita-
tion. The estimation of rainfall statistics presented by
the said maps utilised dependencies of the paramet-
ers of generalised extreme value (GEV) distributions
on location-specific geographic and meteorological
information [6]. This approach enabled the capture
of additional unexplained spatial heterogeneity and
tackled the sparse grid on which observations were
collected.
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Most of the work on extreme precipitation has
relied upon extreme value theory or other methods
that implicitly assume that the rainfall statistics are
stationary [4, 7]. However, climate change implies
that the statistics are non-stationary, and there are
historical trends in the probability of heavy rain-
fall [8–11]. The non-stationarity can be accommod-
ated for in the GEV analysis, for instance by allow-
ing its parameter to change with time [12–14]. Such
efforts nevertheless are associated with substantial
uncertainties, partly because they use block max-
imum (annual maximum) rather than the bulk of the
data for parameter estimation. There are also studies
that have followed an entirely different approach to
extreme daily precipitation than the examples based
on PMP or GEV, such as using the exponential dis-
tribution for describing the 95-percentile of wet-day
precipitation amounts and exploring its dependency
to geographical factors [15]. Despite shortcomings
when it comes to using the exponential distribu-
tion to represent 24 h rainfall statistics, recent work
has suggested that it nevertheless provides a use-
ful frame of reference for more moderate rainfall
amounts [16–18]. For example, an expression that
provides approximate estimates for return levels for
24 h precipitation xτ is

xτ = ατµ ln( fwτ), (1)

where µ is the mean value for the wet days (hence-
forth referred to as ‘the wet-day mean precipitation’),
f w is the wet-day frequency, τ is the return period,
and ατ is a correction factor accounting for the fact
that the data is not exponentially distributed [8]. This
approachmakes use of a larger part of the data sample
than smaller subsets representing block maxima (e.g.
annual maximum rainfall). Equation (1) was derived
from the expression for the probability of heavy 24 h
rainfall Pr(X> x) = fwe−x/µ that gives an approxim-
ate representation of moderate extreme precipitation
amounts, and the parameters f w and µ in this expres-
sion can capture aspects of a changing climate. Hence,
such a framework can incorporate the non-stationary
nature of climate change.

A comparison between the exponential distribu-
tion and observations has indicated that an empir-
ical correction factor ατ is needed to provide a good
match for the return levels and to correct for the
mismatch between the upper tail of the exponential
distribution and the (unknown) empirical distribu-
tion. The value of ατ depends on the return period
τ and varies linearly with the logarithm of the return
period τ according to ατ = 1.256+ 0.064 ln(τ) [8],
compensating for the fact that the empirical distri-
bution has a ‘thicker upper tail’ for the 24 h rainfall
distribution than the exponential distribution [19].
The log-relationship with respect to return period
was derived from the study of a large number of loca-
tions, and by applying a principal component analysis

(PCA) to a bi-variate representation of the quantiles
of the empirical and exponential distributions, it has
been shown that the deviation of the data from the
exponential distribution is similar for 13 000 loca-
tions across the USA and Europe [16]. A framework
based on these PCAs makes it possible to predict the
95-percentile for the wet-day 24 h rainfall on the
basis of the wet-day mean precipitation µ, the wet-
day frequency f w, the elevation z, and the distance to
the coast d [17]. Hence, the exponential distribution
provides a useful reference for the analysis, even when
it gives an imperfect and inadequate representation of
the 24 h wet-day precipitation amount.

We should also expect that ατ for rainfall meas-
ured over sub-daily intervals scales with the timescale
L. Henceforth we refer to the duration of the meas-
urement as timescale. The 24 h precipitation can be
considered as being the sumover 24 h of hourlymeas-
urements, which also implies that the different times-
cales have different probability distribution functions
(pdfs). This dependency to L can be demonstrated
through the central limit theorem which states that
the mean of samples of data with any type of pdf
will converge towards a normal distribution as the
sample size becomes infinite [20]. We also expect that
the mean wet-spell intensity and wet-spell frequency
are functions of timescale L when the duration of
the rain events varies between minutes and hours.
Henceforthwe use the notationsα(L),µ(L) and f w(L)
when referring to the dependency to sub-daily times-
cales as opposed to 24 h precipitation presented in
equation (1), and distinguish between sub-daily and
daily rain measurements by using the term ‘wet-spell’
as opposed to ‘wet-day’ for rainfall accumulated over
24 h. We also refer to the correction factor ατ merely
as α for simplicity since we mainly look at the 10 year
return levels in this study.

2. Methods and data

In this study, a wet-daywas defined as 24 hwith recor-
ded rain exceeding a threshold x0. We repeated the
analysis for different thresholds with an equivalent
of 0.1, 0.5 and 1.0 mm for a 24 h interval and the
thresholds were scaled linearly for sub-daily times-
cales, however, that did not affect our results sub-
stantially (see the supporting material). Hourly rain-
fall amounts over the period 1968–2019 from Oslo-
Blindern were summed over 1, 2, 3, 6, 12 and 24 h
non-overlapping intervals to estimateµ(L) and f w(L).
Many of the winter months had no data in the period
between 1968 and 2012 because the plumatic sensor
did not capture precipitation falling as snow (after
2012 the record also included the winter months,
however, the winter months are not included in the
estimation of the IDF curves). The IDF curves from
Lutz et al [1] used the maximum rain intensity estim-
ated with a sliding timewindow from years withmore
than 80% valid data in the period April–September.
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We used a generalised version of equation (1)
to represent sub-daily scale 10 year return levels by
rewriting it as follows:

xL = α(L)µ(L) ln[fw(L)τ ].

This expression was a starting point for a set of inter-
mediate analyses where we examined the dependen-
cies across timescales for µ(L), f w(L), α(L) and xL,
as described in more detail in the appendix. The res-
ults from these intermediate steps were used as guid-
ance for seeking an approximate representation of
the scaling dependencies for xL. In other words, we
explored whether the characteristics of these curves
could be predicted through a simple and approxim-
ate method to provide a ‘rule of thumb’ estimate for
return levels of sub-daily rainfall. Based on the data
and a simplification outlined in the appendix, where
we treated the non-dominant terms as roughly con-
stant, we found the following expression:

xL = αµ

(
L

24

)ζ

ln [fwτ ] . (2)

The choice of L/24 in this case was deliberate because
1ζ = 1 and equation (2) is identical to equation (1)
for L= 24. Equation (2) enabled us to express how
the return level depends on timescales as well as the
wet-day mean precipitation µ, the wet-day frequency
f w, and the correction factor derived for 24 h precip-
itation [8]. The formula was calibrated against IDF
curves from Oslo and compared with IDF curves for
independent sites. The idea was that if it successfully
represented the 10 year return levels from the IDF
curves, we should see a linear dependency between
ln(xL) taken from the IDF results [1] and ln(L/24)
if the factors α, µ, and the log-term were approxim-
ately constants. In this case we used an ordinary linear
regression (OLR) to estimate ζ from the slope of the
best fit. The slope was estimated for the same 14 sites
in the Oslo area as in Lutz et al [1], and we took the
mean of these to represent ζ in equation (2). It was
then used together with the wet-day mean precipita-
tion µ and the wet-day frequency f w estimated from
daily rain gauge data to estimate the IDF curve for the
10 year return period for 9 arbitrary sites.

The analysis was carried out in the R-
environment [21] and made use of the open
source R-package ‘esd’ [22] freely available from
https://github.com/metno/esd. The information
provided in this paper and its appendix is sufficient
for following this analysis, however, more details
about the analysis are also available in the shape of
an Rmarked-down document and a PDF-file with its
output in the supporting material (available online
at stacks.iop.org/ERL/16/044009/mmedia). This sup-
porting material is provided in the spirit of transpar-
ency and to enable replication of our results. It also
provides a ‘lab notebook’ record for this analysis.

3. Results

To better understand the dependency between the
different temporal scales, we analysed hourly rain-
fall amounts from Oslo-Blindern in more detail. We
found that 85% of all events between 2012 and 2019
lasted shorter than 6 h, implying that most of the 24 h
accumulated amounts consisted of short-term events
padded out with dry intervals (supporting material).
The statistics of the duration of the sub-daily wet
spells is therefore expected to have an effect on how
the wet-spell frequency f w(L) varies with timescale L.
An assessment of the sensitivity of the different factors
in equation (2) to different timescale L suggested that
the log-term with the wet-spell frequency (ln [fwτ ])
varied by a factor of 1.3 as opposed to a factor of 3.8
for (L/24)ζ for Oslo-Blindern. The fact that (L/24)ζ

was dominating over the log-termwas consistent with
a near-linear relationship between ln[xL] from the
IDF curves representing the 10 year return period for
14 sites in Oslo and ln[L/24] (figure 1). These results
indicated that equation (2)may be used as a crude and
approximate estimate of the IDF curve representing
10 year return levels in the Oslo region.

The results from testing equation (2) against inde-
pendent data are shown in figure 2. In these tests,
we used the wet-day mean µ and the wet-day fre-
quency f w from the local observations together with
the estimate for ζ found for the Oslo sites to estim-
ate the IDF curve for the 10 year return levels for
eight independent sites whichwere considered to have
a good quality. The ‘true’ return levels were taken
from IDF curves that were computed using the same
method as in Lutz et al [1]. The results suggest that
the simple expression approximately reproduced the
10 year return levels for all of these sites.

A more stringent test is to use equation (2) to
estimate return levels for longer return periods than
10 years. Our intermediate analysis indicated that the
value of ζ varied slightly, but nevertheless systematic-
ally, with the return period τ within the range 0.4252–
0.4135 (supporting material). By taking this depend-
ency into account, we estimated the return levels for
return periods from 2 to 200 years for one independ-
ent site. In figure 3 the obtained return levels are
compared to IDF curves that were estimated using
the method in Lutz et al [1] which is a traditional
way to compute IDF values. This second test indic-
ated greatest discrepancies for the longer return peri-
ods, not surprisingly, which also were associated with
larger values of α as the more moderate events were
closer to being exponentially distributed. In this case,
equation (2) overestimated the return levels for the
timescales 2–12 h. The shape and the curvature of
the curves are given by equation (2), which means
that it would be unable to reproduce kinks or sharp
bends, as seen for the longer return periods in figure 3.
The shape of these curves is ultimately defined by the

3

https://github.com/metno/esd
https://stacks.iop.org/ERL/16/044009/mmedia


Environ. Res. Lett. 16 (2021) 044009 R E Benestad et al

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

3.
0

3.
5

4.
0

4.
5

Test of scaling in time

ln(L/24) [ln(day)]

ln
(x

) [
ln

(m
m

)]

Figure 1. The log–log relationship between IDF-curves from 14 sites in the Oslo area (see [1]) and ln[L/24], where L is the
duration of the measurement in hours. The slope of the best-fit from the OLR is ζ which is the exponent in equation (2).

way the mean wet-spell intensity µ(L) and frequency
f w(L) vary with timescale.

4. Discussion

As long as the return level estimates for the 24 h
precipitation are representative starting points for
equation (2), it will predict sub-daily return levels
that diminish according to a power-law. One inter-
esting question then is whether there are predictable
relationships between the different timescales and the
amount of precipitation. It would probably not be a
universal dependency, such as Kolmogorov’s power-

law for turbulence [23], however, we can expect the
presence of different meteorological phenomena and
physical conditions to have an effect on the depend-
ency of the rain statistics to timescale. We also note
that there are some studies suggesting that the tail
of hourly and daily precipitation distribution may
have a power-law character [19, 24]. The slope from
the OLR, ζ , is expected to vary geographically with
differences in the local climates and the presence of
convective, frontal, and orographic processes. In this
case, it may be a coincidence that the values fit-
ted for the Oslo region gave good results for Trond-
heim. It would be interesting to explore predictable

4



Environ. Res. Lett. 16 (2021) 044009 R E Benestad et al

0 5 10 15 20

0
20

60
10

0

IDF curve for FREDRIKSTAD 10−year return interval

L (hr)

m
m

0 5 10 15 20

0
20

60
10

0

IDF curve for HAMAR II 10−year return interval

L (hr)

m
m

0 5 10 15 20

0
20

60
10

0

IDF curve for KRISTIANSAND − SØMSKLEIVA 10−year return interval

L (hr)

m
m

0 5 10 15 20
0

20
60

10
0

IDF curve for BERGEN − SANDSLI 10−year return interval

L (hr)

m
m

0 5 10 15 20

0
20

60
10

0

IDF curve for KRISTIANSUND − KARIHOLA 10−year return interval

L (hr)

m
m

0 5 10 15 20

0
20

60
10

0

IDF curve for TRONDHEIM − RISVOLLAN 10−year return interval

L (hr)

m
m

0 5 10 15 20

0
20

60
10

0

IDF curve for BODØ − SKIVIKA 10−year return interval

L (hr)

m
m

5 10 15 20

0
20

60
10

0

IDF curve for Saupstad: 10−year return interval

L (hr)

m
m

Figure 2. Example of IDF curves from eight independent sites in Norway. The green curve presents the predicted IDF-curve for
the 10 year return value based on xL = αµ(L/24)ζ ln[fwτ ] and was derived solely from the local 24 h rain gauge data and the
scaling characteristics from Oslo (ζ= 0.416). The symbols show the return values for the IDF curve computed using the method
from [1].

properties that define both ζ as well as the corres-
ponding power-law scaling in the rainfall intensity β
in µ(L) = µ(L/24)β+1 as well as γ in fw(L) = fw +
γ ln(L/24) (see the appendix). If such properties exist,

they can be of great value because it may then be pos-
sible to estimate an IDF-curve for different locations
from the more abundant 24 h rain gauge records. It
is beyond the scope of this study to search for such
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Figure 3. A comparison for an independent site (Trondheim-Risvollan) between return levels derived from equation (2) (solid
lines) and corresponding IDF curves from Lutz et al [1] (coloured dots and dashed lines).

connections, and we leave it to future work to study
how the timescale dependency varies with physical
conditions.

Often IDF curves are estimated using the annual
maximum rainfall intensity of a sliding time win-
dow to provide input to extreme value analysis. In
this case, we used the annual wet-spell mean pre-
cipitation µ(L) and frequency f w(L). These para-
meters are not expected to be sensitive to a slid-
ing window because they were estimated from the
whole time series divided into sequential non-
overlapping segments. A shift in the starting time
of one would introduce a similar shift in the
rest, and a rain event may start minutes after the

starting point in one segment and before the start-
ing point of another. Nevertheless, the main pur-
pose of the analysis of µ(L) and f w(L) was to see if
the approximation leading to equation (2) was jus-
tified. Equation (2) was then calibrated against IDF
curves that had been estimated with a sliding time
window to find the annual maximum rain intens-
ity irrespective of whether it started on the hour or
not.

We have shown that equation (1) from Benestad
et al [8] on 24 h precipitation can be extended to a set
of return periods on sub-daily timescales. This kind
of extrapolation has also been an implicit assumption
in earlier work concerning PMP for 24 h precipitation
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[2]. The idea of scaling dependency is not new, since

Koutsoyiannis et al [3] proposed a scheme in 1998
for estimating IDF curves by considering different
types of distributions. However, they proposed more
complicated expressions with coefficients that did
not include the wet-day mean precipitation µ and
wet-day frequency f w, and hence had no connection
to these physical aspects. Menabde et al [25] also
observed linear log–log relations between intensity
and duration as shown in figure 1, and argued that
the IDF curves have a simple scaling property in the
duration of 0.5–24 h. They presented a simple analyt-
ical formula which embodied the scaling properties
that enabled the estimation of IDF curves from 24 h
rain gauge data:

xL = [µ∗ − ρ∗ log(− log[1− 1/T])]/Lη

(unit in mmh−1), where typical values for the para-
meters were µ* = 14.3, ρ* = 7.6, η= 0.65 and T was
the return period in years. Their parameters do not
have clear physical units, vary from one region to the
next, and are different to those used in this study.
Hence, the formula presented here is different from
previous expressions, and equation (2) is more com-
patible with fractal behaviour in terms of scaling [26].

The prediction of the shape of IDF curves from
daily rain gauge data can be regarded as a way of
‘downscaling’ information to sub-daily timescales on
par with traditional downscaling based on different
spatial scales. This form for downscaling is differ-
ent to ‘disaggregating’ large-scale conditions, as the
framework presented here can predict statistics on
smaller temporal scales rather than just providing a
plausible and consistent smaller scale realisation. This
way, the framework presented here may be useful
for regions such as Africa, Asia and Latin America
with little sub-daily rain gauge data. Even though it
is imperfect, it can provide useful first estimates for
IDF curves that are not too far off the truth. Also, this
framework can be used in connection with empirical-
statistical downscaling for future local climate con-
ditions if µ and f w can be downscaled for the local
climate. In other words, this framework can involve
downscaling in both space and time. Also, these res-
ults underscore the message that µ and f w are two
essential climate variables that should be included in
the set of climate indicators. Finally, the framework
presented here does not assume stationary statistics
as the return levels are estimated analytically from
equation (2) that accounts for both changes in the
number of rainy days as well as themean precipitation
intensity. It is nevertheless possible that a change in
climate also affects the power-law scaling relation ζ ,
for instance if there is an increase in the convect-
ive events and a decrease in the stratiform precipit-
ation [9]. However, it may be possible to explore the
dependency of ζ on different physical conditions by
studying how it varies between different regions and

different local climate types, and equation (2) can be
used to quantify how changes in µ, f w and ζ affect the
return levels xL.

5. Conclusions

We utilised the dependencies across timescales L in
the wet-spell intensity and wet-spell frequency to
estimate sub-daily rainfall return levels. This scale-
dependency makes it possible to downscale these
parameters with respect to timescales. Also, we used
these properties to derive an expression that approx-
imately represents return levels and showed that it is
able to predict 10 year return levels for independent
sites with a reasonable accuracy.
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Appendix A. Intermediate analysis

A.1. Timescale dependency of wet-spell mean and
frequency
In order to search for a method to estimate sub-daily
return levels, we used a general version of equation
(1) as a starting point:

xL,τ = α(L)µ(L) ln[fw(L)τ ], (A.1)

where xL,τ is the return level for timescale L (the
duration of the measurements in hours) and return
period τ , α(L) is an empirical correction factor that
accounts for the upper tail of the statistical distribu-
tion for precipitation not being exponential, f w(L) is
the wet-spell frequency (how often time intervals L
have recorded rainfall), and the wet-spell mean pre-
cipitation µ(L) (the mean precipitation intensity for
the timescale L). In this case, we examined timescales
L between one and 24 h and a return period τ of 10
years (the reference to τ was dropped in the main
text). The objective of the intermediate analysis was
to use rain gauge data to explore ways to simplify
equation (A.1) for providing approximate estimates
of sub-daily rainfall return levels.

We used sub-daily rain gauge data from Oslo
and started by examining how α(L), µ(L) and f w(L)

7
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depended on each timescale L. Since the measure-
ments were restricted to rain (snow was problem-
atic), we analysed only the ‘warm’ months (May–
November) and calculated µ(L) and f w(L) for each
year. Our first estimate for xL relied on a constant
correction factor where α(L) was taken to be that
of the 24 h rainfall [8]. Figure A1 shows the results
of this intermediate analysis for Oslo-Blindern. The
estimates from equation (A.1) indicated a more pro-
nounced increase in the amounts with the timescale
L (slope of green curve compared to red and blue
in figure A1) than the IDF curves from the Norwe-
gian climate Change Services and [1]. The figure also
shows the return level for 24 h precipitation based
on equation (1) (red circle). The difference between
the estimated results for 24 h precipitation based on
equations (1) and (A.1) in figure A1 was due to dif-
ferent choices in estimating µ and f w (including dif-
ferent calendar months and time periods).

Next, we examined the respective dependency
of α(L), µ(L) and f w(L) on timescale L separately.
Neither µ(L) nor f w(L) depend on τ and the discus-
sion concerning them will ignore the reference to the
return period. Our goal was to find a way to replace
themwith a function of timescale L that could be sub-
stituted into equation (A.1) in order to derive a func-
tion that enabled us to estimate the 10 year return
level xL as a function where only µ, f w, and L need
to be specified for a given site. Whereas the paramet-
ers f w(L) and µ(L) represent physical characteristics
of the rainfall, the correction factor α corrects for the
statistical bias due to the different shapes of the upper
tail of the exponential distribution and the real stat-
istical distribution of the data.

A.1.1. Investigation of how the correction factor α
depends on the timescale
We studied how the correction factor α(L) depended
on timescale L through comparisons between the
exponential and observed distributions for differ-
ent timescales. The results indicated that the stat-
istical distribution of the total amount recorded for
each respective event could be approximated as an
exponential distribution for amounts below 20 mm
with a slow divergence from the exponential distri-
bution for higher values (see the supporting mater-
ial). The observed distribution had a fatter upper
tail in a similar fashion as the 24 h measurements
[16]. Precipitation amounts measured over shorter
intervals, however, have slightly different distribu-
tions and equation (A.1) needs to accommodate for
this with a correction factor that varies with times-
cale L. We then analysed the dependency of α(L)
to timescale by estimating the ratio of α(L) for
sub-daily rainfall to α estimated for 24 h precipit-
ation. This ratio was estimated by dividing the 10
year return levels from the IDF curve (taken from
[1]) by the initial estimate from equation (A.2) that

assumed α(L)=α. A scatter plot suggested that there
was near linear relationship between ln[α(L)] and
ln(L/24), so we used a regression analysis to find
the slope between the two. The best fit was ln[α] =
−0.187± 0.02− (0.34± 0.01) ln[L/24] (R2 = 0.99,
p-value= 8.5× 10−6).

A.1.2. Wet-spell mean precipitation
We compared the distribution of the rainfall amount
for different timescales to see if we could represent the
wet-spell mean precipitation by a simple mathemat-
ical expression. We should expect to see an effect of
timescale on µ(L) because the longer measurement
times have a similar effect as having larger sample
sizes (the wet-spell mean precipitation depends on
timescaleL in accordance toµ(L) = 1

nw

∑n
i [
´ L
0 x(t)dt]i

as the rainfall is accumulated over longer intervals).
We subsequently used a regression analysis to explore
the dependency between the aggregated estimates of
µ(L) to timescale L and looked for linear relationships
such as ln(µ/L)∝ ln(L/24) for the wet-spell intens-
ity. Such a linear relationship would imply that

µ(L) = µ0[L/24]
β+1, (A.2)

(here β is the slope of the fit ln[µ/L] = ln[µ0] +
β ln[L/24]). We defined the wet-spell intensity
Iw(L)=µ(L)/L and a regression analysis gave a
near-linear fit ln[Iw(L)] =−1.12± 0.03+ [−0.34±
0.01] ln(L/24) with an adjusted R2 of 0.9995 and a
p-value of 6.5× 10−8 (threshold x0 set to 1 mmd−1).
These results implied the scaling dependency µ(L) =
µ× [L/24]β+1. For 24 h intervals, L= 24 ([1]β+1 = 1)
and the expressions are just the wet-day mean pre-
cipitation µ. Because α(L)=α(L/24)a has the same
power-law shape as µ(L), we were able to combine
their dependencies and take ζ = β+ 1+ a.

A.1.3. Wet-spell frequency
To get a better understanding of how thewet-spell fre-
quency depends on the timescale, we estimated the
duration and total amount for each rain event. A his-
togram was used to analyse the distribution of the
wet-spell duration and this statistical distributionwas
expected to define how f w(L) depends on the times-
cale (see the supporting material). For the wet-spell
frequency, we explored a logarithmic tendency with
timescale fw(L) = f0 + γ ln[L/24], being inspired by
the relationship found between α and return period
τ [8].We used a regression analysis to find the best-fit
scaling function for the wet-spell frequency: fw(L) =
0.26± 0.01+ [0.056± 0.006] ln[L/24] (adjusted R2

of 0.95 and a p-value of 0.001). Hence, the res-
ults indicated that we could approximately repres-
ent the wet-spell frequency f w(L) by the expression
fw(L) = fw + γ× ln[L/24]. For 24 h intervals, L= 24
(ln(1)= 0) the expression corresponds to the wet-day
frequency f w.

8



Environ. Res. Lett. 16 (2021) 044009 R E Benestad et al

1 2 3 6 12 24

0
20

40
60

80
10

0

xL = αμ (L 24)ζ ln(fwτ)

L (hours), x0= 1 mm

10
−y

r r
et

ur
n 

va
lu

e 
(m

m
)

Figure A1. Box-plot showing estimates for 10 year return value based on equation (A.1) estimated from hourly data from
Oslo-Blindern. Green curve shows predicted IDF curve based on equation (2) for the 10 year return period and 24 h precipitation
only, whereas red curve represents corresponding IDF curve from the Norwegian Centre for Climate Services and the blue curve
IDF similar results from [1]. The red circular symbol is the result from αµln[f wτ ] applied to f w and µ from 24 h rain gauge data.

A.2. Intermediate step 2: searching for
simplifications and approximations
The results of the regression analysis for the different
factors α(L), µ(L) and f w(L) indicated a possibility to

express equation (A.1) as

xL = αµ

(
L

24

)ζ

ln

[(
fw + γ ln

[
L

24

])
τ

]
. (A.3)
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However, it would be more practical to use an expres-
sion with the form of equation (2) directly and cal-
ibrate ζ against IDF curves. We can justify using
equation (2) to get approximate results if the factor
involving ln[f w(L)τ ] varies slowly with L compared
to the other factors. Furthermore, this simplifica-
tion would give us only one parameter to fit, namely
ζ , which is the slope of approximately linear curves
obtained when plotting ln[xL] from the IDF curves
against ln[L/24] as done in figure 1. The results
were not strongly sensitive to the choice of threshold
x0∈[0.1, 0.5, 1] (see the supporting material).
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