Geothermal Technologies Program 2010 Peer Review

High Temperature 300° C Directional Drilling System

May 19, 2010

John Macpherson

Baker Hughes Oilfield Operations

DE-EE0002782

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Mandatory Overview Slide

Timeline

Project Start Date: 12/29/2009 (6/15/2010 est.)
Project End Date: 12/28/2012 (6/14/2013 est.)

Percent Complete: 0%

Budget

Total project funding: \$6,363,900

• DOE share: \$5,000,000

Baker Hughes Share: \$1,363,900

• Funding 2009: \$0

• Funding 2010: \$690,000 (est.)

Barriers

- EGS Well Construction Capability:
 - The inability to drill and complete wells meeting EGS
 requirements (high temperature, high flow rate, low cost)
 results in a greater risk of impairing production or even losing
 wells when drilling

Relevance/Impact of Research

• Objective:

- provide a <u>directional drilling system</u> that can be used at environmental temperatures of up to 300° C, and at depths of 10,000 meters.
- Drilling System Components:
 - Drill Bit:
 - Will investigate PDC, Roller Cone and Impreg Diamond bits, matched to motor and fluid
 - Steerable Motor
 - Will investigate PDM (positive displacement motors), technical fallback is turbine but issue matching with drill bit.
 - Drilling Fluid / Equipment
 - Will develop a drilling fluid & lubricant for 300C
- Impact
 - Capability (directional wells) and efficiency (goal is 50 hours plus on-bottom).

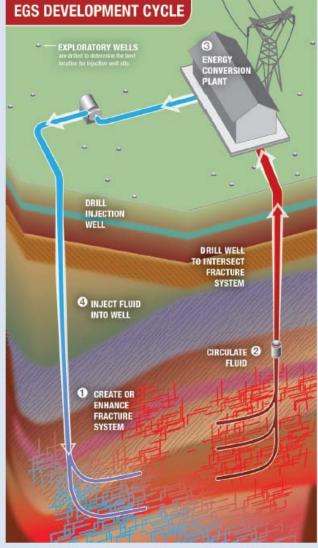
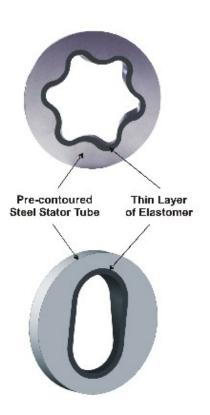


Figure 1.2. Enhanced Geothermal Systems

Scientific/Technical Approach

- Project divided into 3 phases for each component:
 - Concept: with go/no-go decision point after 1 year
 - Design, manufacture, assemble and laboratory <u>system test</u>
 - Testing: controlled, commercial
- Bit Concepts:
 - Roller Cone
 - Challenges: seal technology
 - PDC Bit
 - Challenge: Compact thermal stability
 - Impreg bits
 - · Challenge: Drilling efficiency

Scientific/Technical Approach



- Positive Displacement Motor
 - Challenge: Elastomer, bearings, material corrosion

Components of a Mud Motor

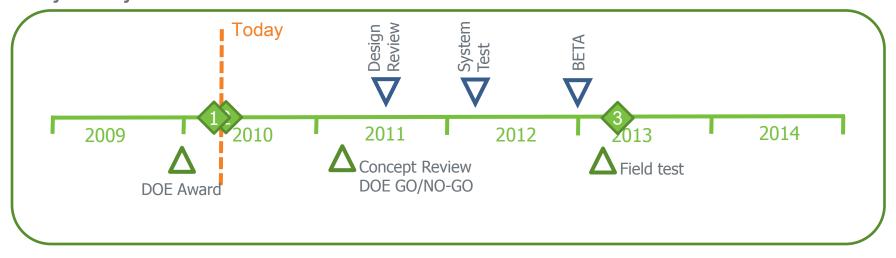
190 C

Scientific/Technical Approach

Drilling Fluid Challenges:

- Thermal stability of products and drilling fluid system
- Stability of rheological properties / mud gellation
- Stability of filtration control products / poor filter cake quality & high fluid loss
- Loss of lubricity
- Contamination Ability to tolerate a moderate amount of contamination (drilled solids, salt, hardness, cement, CO₂ and H₂S)
- Increased mud weights for hole stability at greater wellbore depths and possible abnormal pressure
- Suspension of weighting agents
- Lost Circulation

Accomplishments, Expected Outcomes and Progress


• Progress:

- Early days, signed patent waiver received, putting together team and resources.
- Principal investigators / project managers
 - Aaron Dick: Principal investigator, technical lead drill bit and material science. Extensive experience in drill bit design, especially seal technology, materials.
 - Carsten Freyer: Project management, inter-divisional geothermal programs. Extensive project management experience in MWD systems.
 - Mike Otto: Technical lead, drilling fluids. Over 30 years experience, primary expertise with HTHP fluid applications including geothermal drilling fluids.
 - Kyle Taylor: Technical lead, steerable motors. Extensive MWD and wireline mechanical design experience, including both mud motors and turbines.

Project Management/Coordination

Major Project Deliverables & Milestones

- Project launch during Q2 2010
- End of prototype testing during Q2, 2013

Future Directions

• FY10:

- Assemble teams, develop working concepts
- Analysis of hard rock drillability data
- Conceptual layout of bits
- Laboratory Evaluation of Drilling Fluid
- Evaluate Waste Management Equipment
- Laboratory Verification of Drilling Performance
- Evaluation of Alternative Downhole Drive and Steer Concepts
- Match Motor Performance with Drill Bits

• FY 11:

- Prioritize Motor/Steer Concept Opportunity
- Provide 300C DDS Integral Concept
- GO/NO-GO Decision in Q2 FY 11 (1 year into project)

Mandatory Summary Slide

- Objective:
 - provide a <u>directional drilling system</u> that can be used at environmental temperatures of up to 300° C, and at depths of 10,000 meters.
- Drilling System Components:
 - Drill Bit, Steerable Motor, Drilling Fluid / Equipment
 - Development of 3 prototype systems with field testing
- Impact
 - Capability (directional wells) and efficiency (goal is 50 hours plus onbottom).
- Risk
 - Materials (elastomers, or absence thereof)
 - Complex system at 300C
- Currently starting teams, locating resources
- GO/NO-GO decision point after 1 year in a 3 year research project.