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Introduction

Mathematical methods are central in modern economic theory as
they allow for testable models in a wide range of complex problems.
A further advantage of the mathematical formalism is that it enables
authors to formulate and solve models in a unified language. While
not all economists agree that the behavior of agents can be reduced
to a precise mathematical formulation, utility maximization princi-
ples and game-theoretical equilibria explain, at least partially, many
economic phenomena.

The concept of competing agents is illustrated in the works of A.
Cournot and L. Walras. Indeed, Walras, also known as the founder
of the Ecole de Lausanne, refers to Cournot in 1873, as the first au-
thor to seriously recur to the mathematical formalism in investigating
economic problems. Cournot duopoly model is one of the earliest for-
mulations of a non-cooperative game. This pioneering work sets up
the foundation of contemporary game theory. Walras developed a
first theory of a competitive market (general) equilibrium. W. S.
Jevons and C. Menger are also well known for their influence on the
presence of mathematical formalism in economics.

The mathematical formulation of economic problems has attracted
the attention of notable mathematicians, including E. Borel and J.
von Neumann. In the mid-20th century, in the paper [131], J. Nash
developed a concept of equilibrium that is fundamental in modern
game theory. The arguments in that paper rely on a fixed-point the-



2 [CHAP. 1: INTRODUCTION

orem, due to S, Kakutani. For his “contributions to the analysis of
equilibria in the theory of non-cooperative games”, J. Nash (together
with C. Harsanyi and R. Selten) was awarded the Nobel Prize in
Economics in 1994.

Another Nobel Prize Laureate, R. Aumann, introduced in 1964
the idea of an economy with a continuum of players, which are atom-
ized in nature [14]. In that paper, Aumann argues that only for an
economy with infinitely many participants it is reasonable to assume
that the actions of individual agents are negligible in determining the
overall outcome.

In 1995, the Nobel Prize was awarded to R. Lucas, for the devel-
opment and applications of the hypothesis of rational expectations,
in the early 70’s, [144]. This hypothesis states that economic agents’
predictions of economically relevant quantities are not systematically
wrong. More precisely, the subjective probabilities as perceived by
the agents agree with the empirical probabilities. After the introduc-
tion of this framework, an important paradigm in economic theory is
based on three hypotheses: efficient markets, rational expectations,
and representative agent.

It is only around the 90’s that alternatives to the representative
agent model begin to be considered in mainstream economics. The
idea of heterogeneous agents, as suggested in the works of S. Aiyagari
[10], T. Bewley [27], M. Huggett [107] and P. Krussel and A. Smith
[115], points out in an alternative direction. In this formulation,
agents in the economy are characterized by different levels of the
model’s variables. For example, individuals can have distinct income
or wealth levels.

In the theory of mean-field games (MFG), the concept of Nash
equilibrium and the rational expectation hypothesis are combined to
produce mathematical models for large systems, with infinitely many
indistinguishable rational players. The term indistinguishable refers
to a setting where agents share common structures of the model,
though they are allowed to have heterogeneous states. In other terms,
the MFG theory enables us to investigate the solution concept of Nash
equilibrium, for a large population of heterogeneous agents, under the
hypothesis of rational expectations.
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1.1 Mean-field games

The mean-field game formalism was developed in a series of semi-
nal papers by J.-M. Lasry and P.-L. Lions [118, 119, 120] and M.
Huang, R. Malhamé and P. Caines [103, 106]. It comprises methods
and techniques to study differential games with a large population of
rational players. These agents have preferences not only about their
state (e.g., wealth, capital) but also on the distribution of the remain-
ing individuals in the population. Mean-field games theory studies
generalized Nash equilibria for these systems. Typically, these mod-
els are formulated in terms of partial differential equations, namely a
transport or Fokker-Plank equation for the distribution of the agents
coupled with a Hamilton-Jacobi equation.

From the beginning, applications of MFG ideas and methods to
problems arising in Economics and sustainable development were in-
vestigated by various authors; see, for instance, the work of O. Guéant
[93], A. Lachapelle, J. Solomon and J. Turinici [116] and J.-M. Lasry,
P.-L. Lions and O. Guéant [121, 122]. Regarding the Economics com-
munity, some of the ideas in the paper by P. Krussel and A. Smith
[115] closely resemble the intuition made rigorous by some classes of
mean-field game models. From a purely game-theoretical perspective,
similar ideas were considered in [109]. The importance of MFG mod-
els stems from the fact that it allows a systematic formalization of
two workhorses of the modern economic theory, namely, the frame-
work of rational expectations and heterogeneous agent models. In
several instances of economic interest, ideas and methods resembling
those formalized by the MFG theory have been addressed. This is
the case of [108], [152], [129], [99], [12] and [2], to name just a few.

Recently, substantial progress has been achieved in the study of
the connection between MFG models and problems in Economics
and Finance. See, for instance, the work of R. Lucas and B. Moll
[145] and the developments in the work of Y. Achdou, F. Buera,
J-M. Lasry, P.-L. Lions and B. Moll [4] and Y. Achdou, J. Han,
J.-M. Lasry, P.-L. Lions and B. Moll [7]. This approach has been
fruitful in the study of economic models, while pointing out original
directions of research in Mathematics. The potential applications of
these techniques are various; these include new technology adoption,
economic policies regarding income and wealth inequalities and the
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sustainable management of non-renewable resources.

In addition to applications in mathematical economics, mean-field
game models arise in diverse areas ranging form crowd and population
dynamics [32] to nonlinear estimation [136], and machine learning
[137].

An important research direction in the theory of MFG concerns
the study of the existence and regularity of solutions. Well-posedness
in the class of smooth solutions was investigated, both in the sta-
tionary and in the time-dependent setting. Time-dependent, second-
order problems, are considered in [45], for purely quadratic Hamilto-
nians, as in [46]. The general case was systematically investigated in
[139, 82, 81], for sub and superquadratic Hamiltonians. The case of
logarithmic nonlinearities was addressed in [78]. Additional results
on the regularity of solutions are reported in [79, 80]. The stationary
problem was considered in [85, 83, 77, 140] (see also [71]). Obstacle
type problems and weakly coupled systems were examined in [76] and
[75]. Congestion problems were considered in [72], in the stationary
case, and [90] for time-dependent problems. In [92], the existence
of weak solutions for the congestion problem was proved (see also
the approach with density constraints in [147] and [128]). Finally,
logistic-type dynamics was investigated in [84]. Weak solutions were
addressed originally in [118] (stationary case) and [119, 120] (time de-
pendent problems). Then, they were systematically investigated in
[141, 142, 44, 43]. Many of these results concern simplified problems
(e.g., periodic setting) and do not extend to the models we discuss
here. A novel approach to construct weak solutions for MFG us-
ing monotonicity methods is presented in [63] (see [11] and [86] for
applications to numerical methods using mononocity techniques).

A notable effort was made to study these problems numerically.
Computational methods are particularly relevant in economic models
as they rarely admit explicit solutions. Recent advances in this field
are reviewed in [3], in the papers [5, 6, 8, 47, 41, 9, 20], and in [98, 97].
Monotonicity techniques are used to develop numerical methods for
MFG in [11] and [86]. See [4, 7, 116] for economically motivated
problems. More recently, numerical results for mean-field games on
networks are reported in [40].

Finite state mean-field games have also been considered in the
literature but will not be discussed here. Instead, we refer the reader
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to [73, 74, 70, 95, 94, 64] for the general theory, the reference [26] for
applications to socio-economic sciences (also see [157]), as well as to
[88, 89, 86] for numerical methods.

Applications with mixed populations or with a major player were
examined in [101, 102, 133]. Linear quadratic problems have been
considered from diverse perspectives, see [103], [104], [16], [105], [96],
[132], [19], [24], [23], [123], [54], [155], and [62]. In the context of
MFG, crowd and population dynamics were investigated in [56, 31,
32, 33]. The consensus problem was studied in [134].

The rigorous derivation of mean-field models was considered in
particular cases in the original papers by Lions and Lasry. Further
developments, using the theory of nonlinear Markov processes were
obtained in [114], [111], and [112] (see also the monograph [113]),
and using PDE methods in [18, 62]. For finite state problems, the
N-player problem was studied in [74] where a convergence result was
established. For earlier works in the context of statistical physics
and interacting particle systems, see [150]. Recent results in this
field include [65] and [117].

A related problem is mean-field control. For that, we refer the
reader to the monograph [21], as well as the papers [50, 134], com-
paring these different approaches.

1.2 Mean-field games and economic the-
ory

In traditional economic models, the simplifying assumption that all
agents are identical (representative agent assumption) is often adopted.
In contrast, heterogeneous agent problems allow the study of ques-
tions in which the differences among agents are of primary relevance.
Matters such as income inequality or wealth distribution are inher-
ently associated with differences among agents. In other problems,
the effect of heterogeneity may not be adequately captured by the
representative agent assumption.

Mean-field games model large populations of rational, heteroge-
neous agents. The analytical spectrum of the MFG framework ac-
commodates preference structures and effects that depend on the
whole distribution of the population. A rational agent is an agent
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with defined preferences that he or she seeks to optimize. In the
vast majority of cases, these preferences can be modeled through a
utility functional. Rationality means that the agent always acts opti-
mally seeking to maximize its utility. Finally, MFG are closely linked
to the assumption of rational expectations. The forecast of future
quantities by the agents is an essential part of any economic model.
The rational expectation hypothesis states that predictions by the
agents of the value of relevant variables do not differ systematically
from equilibrium conditions. This hypothesis has several advantages:
firstly, it can be a good approximation to reality, as agents who act
in a non-rational way will be driven out in a competitive market; sec-
ondly, it produces well-defined and relatively tractable mathematical
problems; finally, because of this, it is possible to make quantitative
and qualitative predictions that can be compared to real data. In
mean-field game models, the actions of the agents are determined by
looking at objective functionals involving expectated values with re-
spect to probability measures that are consistent with the equilibrium
behavior of the model. This contrasts with the adaptive expectations
approach, where the model for future behavior of the agents is built
on their past actions.

Agent-based computational methods are very popular tools to
study heterogeneous agent economic problems. Unfortunately, nu-
merical methods do not provide analytical models from which qual-
itative properties can be derived. In modern macroeconomics, an
important role is played by dynamic stochastic general equilibrium
models. These aim to understand the microfoundations of macroeco-
nomics. MFG methods are equilibrium models where all agents are
rational. In simple problems, fundamental questions such as unique-
ness, existence or stability were investigated extensively. However,
many MFG problems arising in mathematical economics raise issues
that cannot be dealt with the current results.

The reader interested in the connection between mean-field games
and economics is referred to the work of J.-M. Lasry, P.-L. Lions and
O. Guéant [121, 122]. Developments in the computation of MFG equi-
librium arising in economic problems are reported by A. Lachapelle,
J. Salomon and G. Turinici in [116]. Liquidity issues were investi-
gated in [148]. Energy markets and power grid management were
considered in [15, 127]. Systemic risk was examined in [143]. Price
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formation was considered in [120, 30, 29, 35, 34, 25]. In [4], the au-
thors develop MFG methods for a wide range of economic problems
modeled by partial differential equations. In particular, the mate-
rial on that paper was the inspiration for part of our discussion in
Chapter 3. Further results are reported in [7], [135] and [145].

1.3 Outline of the book

In this book, we have attempted to illustrate the main techniques
and methods in mean-field games theory, in several simplified models
motivated by economic considerations. We do not claim that any of
them reflects the reality accurately. In fact, we secretly hope and en-
courage our readers to criticize our models and to attempt to improve
and develop them. However, we expect the methods and principles
put forth here to be useful in the description of heterogeneous agent
problems.

The structure of this book reflects these guiding principles. We
have divided the book into two parts. In the first one, we develop
deterministic models. Little background is necessary beyond calculus
and differential equations, although a certain level of mathematical
maturity may be required. In the second part, we present supplemen-
tary material on stochastic models. Here, a reasonable familiarity
with It calculus is a prerequisite.

We begin the first part, in Chapter 2, with a brief discussion of
deterministic mean-field games. Then, in Chapter 3, we consider
simplified problems with heterogeneous agents. In Chapter 4, we
propose various models to study economic growth. We address the
price formation in an economy with consumer and capital goods, the
role of central banks in determining interest rates, international trade
and trade imbalances and price impact. We end this first part of the
book, in Chapter 5, with an outline of mathematical methods and
some theoretical results.

The second part of the book comprises three main chapters, to-
gether with a last chapter discussing mean-field games with correla-
tions. In Chapter 6, we present preliminary material on second-order
mean-field games. These include elementary notions in stochastic
optimal control theory and Hamilton-Jacobi equations, along with
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topics on the Fokker-Planck equation. Chapter 7 examines growth
models in the presence of stochastic shocks. The mathematical anal-
ysis of a growth model with noise is reported in Chapter 8. We
prove a Verification Theorem and establish monotonicity and con-
cavity properties for the value function. A comparison principle in
regulated markets closes the chapter. In Chapter 9 we discuss mean-
field games with correlated noise terms. Following some introductory
material, we consider a growth model and derive the associated mas-
ter equation.
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found in [110]. For a discussion of the contribution of L. Walras and
A. Cournot, we refer the reader to [28, Chapter 13|, [67] and [146].
Readers interested in a comprehensive account of the contribution of
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Chapters VI-VIII].

For the first work of J. von Neumann on game theory, we refer
the reader to [153]. The book by the author, in collaboration with
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see [130].

For mean-field games theory, we suggest the video lectures by P.-
L. Lions at the College de France [124]. For the first ideas and results
in MFG, the references are the seminal papers by J.-M. Lasry and
P.-L. Lions [118, 119, 120] and M. Huang, P. Caines and R. Malhamé
[103, 106]. The survey [42], [87] and the monograph [21] synthesize
recent advances in the field.






Part 1

Deterministic models






2

First-order mean-field
games

Here, we put forward an outline of the theory of deterministic mean-
field games. We begin with a brief review of the deterministic optimal
control theory. Next, we proceed with a discussion of the essential
properties of the transport equation. Then, we present a typical
formulation of first-order mean-field game problems.

2.1 Deterministic optimal control prob-
lems

The standard setting of deterministic optimal control problems is the
following: consider a single-agent whose state is denoted by x; € R¢,
for tg <t < T, where T > 0 is arbitrarily fixed; the case T < oo is
referred to as the finite horizon optimal control problem.

The state x; is governed by the ordinary differential equation

xt = [(vi,X¢), (2.1)

where f : R™ x R? — R? is a given function and v; € R™ is a
control. At each instant, the agent controls her state x; through
f, by choosing different values of v;. To be rigorous, we set W =

13
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{v:[to,T] > W, v € X}, where W C R™ and X is a suitable func-
tion space (e.g., L ([to, T], W)).

The agent has certain preferences, expressed through a utility
functional J(vy,xy;t); for ¢ € [tg, T), this functional is given by:

T
J(v,x;t) = / u(vs,xs)ds + ¥(xrp),
¢

where u : R™ x R? — R is called the instantaneous utility function of
the agent and ¥ : R¢ — R is the terminal payoff. The instantaneous
utility is also referred to as the running cost. If 7' = oo, we introduce
a discount rate 5 > 0 and consider

+oo
Jp(v,x;t) = / e Py (vy, x,)ds. (2.2)
¢

Throughout this chapter, we focus on a variant of the problem (2.2),
where

T
Jo(V,x;5t) = / e (v, x4)ds + e T W (x7). (2.3)
¢

The single-agent seeks to maximize J, among all possible controls;
the supremum over all controls:
Vx,t) = sup Jo(v,z;t), (2.4)
vew
is called the value function associated with the deterministic optimal
control problem (2.1)-(2.3).
For technical reasons, we make certain assumptions on f, to en-

sure that the problem can be addressed rigorously. In the remainder
of this chapter, we suppose f € C(R™ x R? R?) and

|f('U,$1) - f(U,l'2)| < 09 |$1 _-1:2"

for every z1, 1o € R and v € R™, with |v| < 6. Finally, we require
f to be linear with respect to v.

If V(z,t) is of class C}(R? x [to, T]), it solves a nonlinear partial
differential equation known as the Hamilton-Jacobi equation (HJ). It
is given by

Vi(z,t) — oV (z,t) + H(x, D,V (z,t)) = 0, (2.5)
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where the Hamiltonian H = H(z,p) is defined by

H(x,p) = ngI;Lnf(v,w) + u(v,z)]. (2.6)

In the usual language of the optimal control theory, (2.6) is called
the Legendre transform of the running cost u. Moreover, as we will
prove later, the optimal control v} is determined by

H,(x*,D,V(x*,t)) = f(v*,x"). (2.7)

By solving (2.7) with respect to v*, we obtain an optimal control in
feedback form.

The previous discussion can be made rigorous by means of a Ver-
ification Theorem that we present in this chapter.

Dynamic programming principle We begin by discussing a pre-
liminary result, namely, the Dynamic Programming Principle (DPP).

Proposition 2.1.1 (Dynamic Programming Principle). Letr € (to,T)
be fized and assume that V is defined as in (2.4). Then, we have

V(z,t) = sup (/ e Gy (v, x,)ds + e V(X,-,r)) .
vew t

Proof. The proof has two steps.

Step 1 - For t < s < r, choose a trajectory x and let v be the
associated control. Set y = X,.. Then,

T
V(y,7) = sup (/ e_a(s_r)u(vs,xs)ds—l—e_a(T_T)\IJ(XT)
vew r

(2.8)
Fix € > 0 and choose an e-optimal control v for (2.8); as usual,
denote by x¢ the associated trajectory. Then,

T
V(y,r)—e < / e CMy(ve, x8)ds + e T (x5).
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Define the control

. {\75 if s € [t,r],

ve  ifse (rT).

Then,

T
V(x,t) > / e Gy (T, %) ds + e T DU ()
t

= /T ey (v, %, )ds + /T e Gy (ve, x6)ds

t T
+ e T (xf)

> /T ey (Vy, Xy )ds + e (V(y,r) —€).

t
Because € > 0 is arbitrary, we have
V(z,t) > / ' ey (T, %) ds + e OV (y, 1), (2.9)
t

Taking the supremum with respect to v in the right-hand side of
(2.9), one obtains

V(x,t) > sup (/ e Gy (v, x4)ds + eo‘(rt)V(y,T)> .
t

vew
(2.10)
To conclude the proof, we verify the reverse inequality.

Step 2 - We consider the same trajectory x and fix p > 0. By
choosing a p-optimal control v”, we notice that

T
Viet)—p< [ e Ouvixt)ds + e T Ow6)
t
T T
:/ e_“(s_t)u(v§7x§)ds+/ e~y (vP xP)ds
t T

+em TTw ()

< [ et huv xds + eIV g,
t
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where x? is the trajectory associated with v?. Again, because p is
arbitrary, by taking the maximum, we obtain

V(z,t) < sup (/ e Gy (vy, x,)ds + e_a(T_t)V(y,r)) .

vew t
(2.11)
By gathering (2.10) and (2.11), one concludes the proof. O

A Verification Theorem The DPP is instrumental in the anal-
ysis of optimal control problems. By recurring to the DPP, one can
rigorously verify that the value function V' associated with (2.1)-
(2.3) satisfies the Hamilton-Jacobi equation in (2.5), provided V has
enough regularity.

In general, the value function is not differentiable. Nevertheless,
using the theory of viscosity solutions, it is possible to obtain weaker
versions of Theorem 2.1.1, see [66].

Next, we show the converse of that statement, namely: if a func-
tion V' has enough regularity and it solves the Hamilton-Jacobi equa-
tion, then V is the value function of the optimal control problem
(2.4).

In our setting, the first step towards a Verification Theorem is to
equip (2.5) with a terminal condition:

V(z,T) = U(x), (2.12)
where ¥ accounts for the terminal cost in (2.3).

Theorem 2.1.1 (Verification Theorem). Let U € C1(R? x [to,T])
be a solution of (2.5) equipped with the terminal condition (2.12).
Then,

Uz, t) > V(x,t), for every (z,t) € R? x [to, T].
Moreover, if there exists v* such that
H(x;,DU(x},t)) = DU(x},t) - f(vi, %)) +u(vi,x}), (2.13)

where X% s the trajectory associated with the control v*, then v* is
an optimal control for (2.1)-(2.3) and U(z,t) =V (x,t).
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Proof. We start by noticing that

T
e T (xp,T) = / e G (—qU + U, - f(vs, %) + Uy) ds
t

(2.14)
+ [](Xt7 t)
By combining (2.14) with (2.6), we get
T
U(x,t) > / e (v, x4)ds + e T DU (x7). (2.15)
¢

This gives the first part of the Theorem.

For the second part, we notice that (2.13) and (2.14), along with
the assumption regarding the terminal condition, yield equality in
(2.15). This concludes the proof. O

The Pontryagin maximum principle We now present the Pon-
tryagin maximum principle. This result formalizes a set of necessary
conditions for the occurrence of a maximum (or a minimum) in the
context of an optimal control problem. Here, we consider the problem
given by (2.1) and (2.3).

We first introduce the adjoint variable. Let v* be an optimal
control for (2.1)-(2.3) and denote by x* the associated trajectory.
The adjoint variable, q : R — R%, is the solution of

d

% (e_o‘(s_t)qj(s)> —em(st) Z Vi, Xg)ai(s)  (2.16)

3
—e 6T gy (v, x
5 Vi)
with
a(T) = DI (x}). (2.17)
To proceed, we also need the notion of strongly approximately
continuous function; we say that a function vy : [t,T7] — R™ is
strongly approximately continuous at s € [¢,T] if

*?i%(s/
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for all g € C(R™). In what follows we assume the controls, and their
respective trajectories, to be strongly approximately continuous a.e.
in [t,T7.

Theorem 2.1.2 (Pontryagin maximum principle). Let v* be an op-
timal control for the optimal control problem (2.1)-(2.3). Assume that
q is a solution to (2.16) equipped with the terminal condition (2.17).
Then,

als) - [(vs,x5) +u(vy,x;) = H(x", q(s)).

Proof. Fix s € [t,T) such that v* is strongly approximately continu-
ous in s, and choose ¢ > 0 such that s + ¢ € [t,T]. Define

VJ(T)_{V r€[s,s+ 9],

v otherwise.

We denote by x5 the trajectory associated with vs. Because v* is

optimal, we have J,(v*,x*;t) > J,(vs,Xxs;t). Hence,

1 s+9
0< S/ e D) (y(v*, x*) — u(v, x5)) dr (2.18)

1 ’ —a(r-t) *x*) — X
+5/s+5e (u(v*,x*) —u(v*,xs)) dr
F Lm0 (W6 (1)) — (1))

We proceed by taking the limit 6 — 0 in (2.18). Because v* is
strongly approximately continuous, the first term on the right-hand
side of (2.18) becomes

e—ls=t) (u(v*,x*) —u(v,x¥)),

as 6 — 0. By recurring to the mean-value theorem, the second term
becomes

T 1
/ et / e (VF, X+ ONEs(r)) - €5(r)dAdr,
s 0

+4

where
x* — x5

§s(r) = 3
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Notice that &5 — £ as 6 — 0, where £ solves the following Cauchy
problem:

{g(r) = fo(V,x*)E(r) T =5, (2.19)

&(s) = f(v,x*) — f(v,x*).
Therefore, by taking the limit 6 — 0, (2.18) yields the inequality:

T
0 < e (u(v?, x) — ulv, x")) + / e, (v, x") - £(r)dr

(2.20)
+e D (xp) - §(T).
Consider now
e 0qrem)] = L (e 0g(0)) ) + Vgt

by combining (2.19) with (2.16), we obtain

d —a(r— —a(r— * ¥

e (e = —e Ty (v x e ().

This, along with (2.20) and the definition of the Hamiltonian H,
concludes the proof. O

In the literature, (2.17) is called a transversality condition. Other
related transversality conditions are typical in optimal control prob-
lems. For a more detailed discussion, see [66].

Next, we briefly present the very basics concerning the transport
equation and discuss a few facts about its solutions.

2.2 Transport equation

Consider a population (of economic agents, bacteria, molecules, etc.)
whose microscopic dynamics, that is, at the single-agent level, is gov-
erned by the following ordinary differential equation:

{)‘ct:b(xt,t) t > to, (2.21)

:x,
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where b is a Lipschitz vector field. The vector field b induces a flow
that transports the population’s density, pushing it forward or back-
ward in time. The evolution of this density, denoted by p, is described
by the first-order partial differential equation

pr + div(b(z,t)p) = 0. (2.22)

That is called transport equation. Next, we present a few elementary
facts about (2.22) that are critical to its physical interpretation.

Proposition 2.2.1. Let p be a solution of (2.22) with initial con-
dition p(x,ty) = po(x), for some probability density py € C°(R?).
Then we have:

(Positivity of solutions) p(z,t) > 0 for all t > to;

(Mass conservation)

[ otatie = [ iz = 1.

for allt > tg.
Proof. The first claim follows from the maximum principle, since pg >

0. To verify the second claim, notice that

= tydz = 0
o de(x, )dx

for all t > tg. This, and the fact that

/ po(z)dr = 1,
Rd

concludes the proof. O

The vector field b in (2.21) generates a flow in R? denoted by ®;.
This flow maps = € R? to the solution of (2.21) at the instant ¢ > to,
with initial condition x.

Let (x,t) be the measure on R? given by

o(x)b(z,t)dx = @ (Py(x)) Oodz. (2.23)
R4 R4

Then, we have the following:
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Proposition 2.2.2. Let 0 be the measure on R? determined by (2.23).
Assume that the vector field b is Lipschitz continuous and denote by
O, the flow corresponding to (2.21). Then,

{Gt(x,t) + div(b(z,t)0(z, 1)) = 0,  (w,t) € R X [tg, 00) (2.24)

O(x,tg) = Op(x), z € RY,
in the distributional sense.

Proof. We start by recalling the definition of solution in the distribu-
tional sense. A function p is said to solve (2.24) in the distributional
sense if

- / - / p(2,1) (60(2, ) + bz, )b (2, 1)) dadt — / po(2)(z, to)dz,
to R4

Rd

for every ¢ € C°(R? x [tg,00)). Differentiate both sides of (2.23)
with respect to ¢ to obtain

S@ s = [ (0000, (Bi(2) bo(a)da,
Rd Rd

Therefore,

()6 (z, 1) = / (b, £)6(2)) Oz, t)d,

where, we have used the definition of ®;. Integration by parts con-
cludes the proof. O

We conclude this section with a result relating (2.21) with the
Dirac delta evaluated along x ().

Proposition 2.2.3. Assume that (2.21) holds and suppose that b is
Lipschitz continuous. Then, dg,(,) solves (2.24), in the distributional
sense.

Proof. If po(x) = 04,, the right-hand side of (2.2) becomes

e 5TO(I)¢(SE,t0)dlL’ = d)(antO)'
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Moreover, if p(x,t) = ¢, (x), we have:

_/toO /Rd&bt(a:o)(x) (d)t(l‘,t) + b(x7t)¢x(x’t)) dadt

= — d)t(q)t(.’lio),t) + b(q)t(xo),t)qﬁm((l)t(xoLt)dt.

to

Because of (2.21), we then have
_ / / B an) (@) (D0, 2) + b, D) ,1)) vt
to R

> d
=— | Zo@
| @0
= QS(CEO’ tO);
which closes the proof. O

Remark 2.2.1. The converse of Proposition 2.2.3 is also valid. To
verify it, it suffices to observe that, if 0p,(y) is a solution of (2.24) in
the distributional sense, the previous proof implies

/oo (b((I)t(xo)J) - ét(xo)) b (@4 (w0), t)dt = 0,

to

for every ¢ € C°(R? x [tg, ).

2.3 Reduced mean-field games

As mentioned in the Introduction, among the main motivations for
the study of mean-field games are the connections with the theory of
N-players differential games. A solution of the MFG formalizes for
the case N — oo the concept of Nash equilibrium of the N-person
differential games.

Some reduced mean-field game models can be rigorously derived
as the limit of the equations characterizing N-players differential
games, when the limit N — oo is considered. In the sequel, we
present a heuristic derivation of a model mean-field game.



24 [CHAP. 2: FIRST-ORDER MEAN-FIELD GAMES

We start by describing the single-agent optimal control problem.
Suppose that the state of a certain agent at time ¢ is characterized by
the vector x; € R?. In addition, assume that the state x; is governed
by the following ordinary differential equation:

{Xt = Vg, t S (to,T]

Xto =,

(2.25)

where v; is a control and 2 € R? is a given initial condition. This
agent seeks to maximize the functional:

T

Iwzite) = [ ulvax) +glplds +urter), (220)
to

where u is a Lagrangian, up is a terminal condition and g[p] is a term

to be made precise later. Define

H(z,p) = sup (p-v+u(v,z)).

We know, from Section 2.1, that, under regularity assumptions, the
value function V' associated with the optimal control (2.25)-(2.26)
solves the Hamilton-Jacobi equation:

Vi(x,t) + H(z, D,V (z,t)) = glp], inR?x [ty,T)
V(z,T) = ur(z), in RY.

Furthermore, the optimal control v* is given in feedback form by
v* = H,(x,D,V(x,t)).

If this agent is rational, her state evolves according to (2.25), where
the velocity v is given by the feedback optimal control v*.

Next, we consider a population of rational and indistinguishable
agents. The statistical distribution of agents in this population is
encoded in the density p of a probability measure. In this population,
each agent faces the same optimal control problem. Therefore, the
state of each individual is driven by

X, = Hy(x, D, V(x,5)), (2.25)
Xt, = Z.
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By the previous discussion, g in (2.26) encodes the dependence of
the agents’ cost functional on the density of the entire population.
Accordingly, the optimization problem faced by the agents depends
on the evolution of p. Conversely, p evolves according to a vector
field determined by V.

From Section 2.2, we know that the density p evolves according
to:

pe(x,t) + div(Hy(z, DV (z,t))p(x,t)) = 0, inRY x (to,T]
p(@,to) = po(z), in R%.

The mean-field game system associated with this problem is:

Vi(z,t) + H(z,D,V) = glp|(z,1), in R? x [to, T) (2.27)
pt(xat) + le(HP(x>DrV)p(xat)) =0, in RY x (to,T}, .
equipped with initial-terminal boundary conditions
T) = in R<.
Vi) = ur(@), 22
p(xvtO) = pO(w)v in R%.

Roughly speaking, the model problem (2.27)-(2.28) accounts for
the mutual dependence of two distinct processes. First, the evo-
lution of a population that behaves optimally; second, an optimiza-
tion problem population-dependent. It is precisely this interplay that
characterizes the optimal control v* = Hp(x, D,V (x,t)) as a Nash
equilibrium.

In this model problem, the dependence of the value function on
the density is encoded by the map g. However, distinct settings may
arise; for example, this dependence can be encoded in the utility
function u, as in the formulation of the congestion problem, see [72],
or through equilibrium conditions. This last type of coupling is of
paramount importance in economic problems and will be detailed in
next chapters.

Bibliographical notes For the material presented in Section 2.1,
we refer the reader to [17], [66] and [126]. The definition of strongly
approximately continuous function can be found in [60]. A com-
prehensive account of the theory of viscosity solutions of first-order
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Hamilton-Jacobi equations can be found in [17] and [66]. For a more
detailed discussion of the Pontryagin maximum principle, see [66].

For an introduction to the transport equation, see [58]. Regarding
applications to mathematical biology, see [138]. In [138, Chapter 6],
one can find a self-contained account of mathematical methods for
the transport equation. These range from elementary properties to
the Di Perna-Lions theory and more sophisticated techniques.

Further references on reduced mean-field games can be found in
[42], [124] and [87].
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Some simple economic
models

In this chapter, we put forward three models with heterogeneous
agents. These describe simplified problems, that, we believe, depict
the key techniques we develop here. We begin with a version of the
Solow model for capital accumulation. We use this model to illus-
trate some differences between free market economies and centrally
planned ones. Strictly speaking, the free-market version of the Solow
model is not a mean-field game as there are no interactions between
the agents. The planned economy version turns out to be a mean-field
control problem. Next, we consider a deterministic Aiyagari-Bewley-
Huggett model that includes both wages and capital accumulation.

3.1 Economic models

3.1.1 Agents and their states

Agents in the economy are divided into two main groups: microeco-
nomic agents and macroeconomic agents.

Microeconomic agents Microeconomic agents are small partici-
pants in the economy and, individually, cannot influence the economic

27
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outcomes. Consumers, workers, and firms are examples of microeco-
nomic agents.

Macroeconomic agents In contrast to their microeconomic coun-
terparts, macroeconomic agents are able to impact directly the econ-
omy. Instances of macroeconomic agents include central banks, large
firms (e.g., monopolistic firms) or governments.

Microeconomic variables Microeconomic agents in the economy
are characterized by individual state variables that we call microe-
conomic variables. These include, for instance, the wealth, capital
or wages of each small participant in the economy. A probability
measure p describes the global distribution of agents along the state
space of the economy.

Heterogeneity in the microeconomic variables is the hallmark of
heterogeneous agent models. The density p synthesizes all the infor-
mation concerning the agents’ distribution.

Macroeconomic variables Unlike microeconomic variables, that
are heterogeneous among the economy, a macroeconomic variable is a
global quantity of the system. These include exogenous variables such
as taxes, external demand for goods, or variables that are determined
by equilibrium conditions such as relative prices.

3.1.2 Dynamics and controls

We start by describing the controls of the agents in the economy.

Controls (actions) Agents in the model are allowed to choose the
levels of certain quantities. These quantities are called controls and,
in the framework of mean-field games, will be also referred to as
strategies.

Controls can be either of micro or macroeconomic nature. The
former case regards actions taken by microeconomic agents; these
concern consumption levels, investment, etc. On the other hand,
macroeconomic controls concern the actions of the macroeconomic
agents in the economy.



[SEC. 3.1: ECONOMIC MODELS 29

Constitutive relations The relations between various quantities
in the economy are specified by constitutive relations that are model-
dependent. An example is the relation between productivity and
capital or the capital depreciation function.

Dynamics Controls and the constitutive relations, determine the
evolution of the agents’ state in the economy. This is formalized
by certain prescribed laws, that relate those objects with the state
variables. The collection of these laws is known as the dynamic of
the model.

This dynamic can be deterministic or include stochastic elements
such as diffusions or jump processes.

3.1.3 Preferences

The assumption of rationality presumes that agents choose controls
in order to optimize some functional. This functional encodes the
preferences of the agents with respect to the variables of the model.

For example, it is reasonable to suppose that a microeconomic
agent in the model prefers more consumption to less, whereas a cen-
tral bank aims at controlling price levels while promoting growth
and capital accumulation. In the case of microeconomic agents,
these ideas are formalized through an instantaneous utility function.
Monotonicity and concavity encode many qualitative properties of
the model. For instance, with respect to consumption, the utility
function is increasing (agents are assumed to prefer more consump-
tion to less) and concave, for the satisfaction, due to increments in
consumption, is decreasing. In case of a macroeconomic agent, pref-
erences are represented by an instantaneous welfare function.

Because agents make choices over a particular time span, we in-
troduce the intertemporal counterparts of the utility and the welfare
functions.

3.1.4 Equilibrium conditions

The economic models in this book are constrained by conditions re-
lating the various quantities involved in their formulation. These
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constraints are called equilibrium conditions and formalize the intu-
itive notions behind the economic processes described in the models.

An example of such a condition is the following: in the setting of a
closed economy, the total investment must equal the total production
of capital goods.

3.2 Solow model with heterogeneous agents

Here, we describe a heterogeneous agent capital accumulation model.
This model serves to illustrate two distinct economies - a free market
economy where the price level is determined by a market clearing
condition, and a centrally planned economy, in which the central
planner sets the share of production that is consumed by the agents.
We proceed by detailing the basic elements of this model.

Microeconomic agents Agents in the economy are characterized
by their levels of capital, k; > 0. The distribution of agents in the
state space is given by a probability density p = p(k,t).

Constitutive relations The model has a resource constraint, en-
tailed by a production function, f = f(k). This function encodes
the technology of the economy. The production function gives the
amount of output f(k) of an agent with capital k.

We assume that f/(k) > 0, for k£ > 0, and

lim f'(k) = +oo  and lim f'(k) = 0. (3.1)
k—0 k—o0
The limits in (3.1) formalize the notion of marginal productivity of
capital.
The production of an agent with capital k; is divided between an
amount ¢; of consumption and i; of investment. This corresponds to
the microeconomic resource constraint:

flke) = e + i, (3.2)

where ¢, iy > 0.
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Dynamics: capital accumulation In this economy, the accumu-
lation of capital is governed by the following ordinary differential
equation:

ky = iy — Oky, (3.3)

where 0 < § < 1 is the capital depreciation rate of the economy, and
1¢ 1s the investment.

Next, we solve this model by making two distinct sets of assump-
tions. First, we consider a free-market economy; in this setting,
agents choose their consumption levels in order to maximize some
functional J = J(c, k,t). Later, we present a planned economy, in
which the consumption level is chosen by a central planner that max-
imizes a welfare function of the consumption level of the economy.

3.2.1 Free-market economy

In a free-market economy, agents are free to allocate their production,
f(kt), between consumption and investment in (3.2).

Microeconomic actions (controls) We assume that agents con-
trol the amount of consumption, ¢;. The agents select the control
by maximizing certain preferences, subject to the constraints ¢; > 0,
iy > 0 and (3.2). From this, we derive that 0 < ¢; < f(k¢).

Agents’ preferences Agents in the economy are assumed to be
rational, i.e., they maximize preferences over quantities of the model.
We assume these preferences are represented by a utility function
u = u(c, k). As in (3.1), the instantaneous utility function u presents
decreasing marginal increments. That is, the map (¢, k) — u(c, k) is
increasing in (¢, k) and concave. Given a discount rate o > 0, agents
maximize the intertemporal counterpart of the instantaneous utility
function u:

oo
J(ce ke, t) = / e (e, ky)ds. (3.4)
t

In this case, agents choose their consumption level according to
the optimal control problem comprising (3.3) and (3.4). That is,
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agents are interested in

V(k,t) = sup/ ey (e, ky)ds;
¢

Ct

If V' is regular enough, it solves the following Hamilton-Jacobi equa-
tion:

Vi—aV + H(k, Vi) =0,
where H(k, qx) is given by

H(k, Vi) = O<sgg(k) ((f(k) —c—0k) Vi + u(c, k)) . (3.5)

The optimal control c¢*, when it exists, is given in feedback form by
Hy(k,q) = f(k)—c" — Ik, (3.6)

where the second equality follows from (3.2).

Transport of the agents’ density The density of agents in the
state space is governed by a transport equation. The assumption
of rationality implies that every agent acts according to the optimal
control (3.6). Therefore, the evolution of the density p is driven by

pe(kt) + (Hy(k, Vi) p(k, 1)), = 0.

Consequently, the Solow growth model for a free-market economy
can be written as the system:

V,—aV + H(k, Vi) =0
pe(k,t) + (Hy(k, Vi)p(k,t)), =0,

where H is given as in (3.5).

3.2.2 Planned economy

As before, we suppose that agents have a production function f(k)
but they are not allowed to allocate freely between consumption and
investment.
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Constitutive relations In this economy, a planner controls the
fraction A\; of the production that can be used for investment or
consumption. Hence, the investment and consumption of a typical
agent are

i = A f(Ke), ce = (1= X)) f(ke).

Macroeconomic controls The central planner controls the rate

Transport of the agents’ density The density of agents in the
state space is governed by the transport equation:

pir(kyt) + ((Ae = 0) f(K)p(k; 1)), = 0. (3.7)

Macroeconomic variables For convenience, we introduce here
the aggregate production

F = / FR)p(kst). (3.8)

Macroeconomic preferences The central planner aims at maxi-
mizing a welfare function that measures the consumption. The plan-
ner has an instantaneous welfare function U and a positive discount
factor a. The intertemporal consumption functional is

/ T a1 - A E.)ds, (3.9)

Together with the transport equation (3.7), this is a mean-field con-
trol problem. We regard p as a state variable, with controlled dynam-
ics given by (3.7) and we seek to maximize the objective functional
(3.9) that depends on p through (3.8).

3.3 The Aiyagari-Bewley-Huggett model:
deterministic case

In the sequel, we discuss a deterministic version of the Aiyagari-
Bewley-Huggett model. This model describes an economy where
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agents are heterogeneous in wealth and wage. The interest rate is
the single macroeconomic variable, and it is determined by a zero net
supply condition.

Microeconomic agents At each instant ¢t > ¢, agents in the econ-
omy are characterized by their income and wealth levels, respectively
denoted by z; and a;.

For each time ¢, we assume the agents’ statistical properties are
encoded in a probability density in R? denoted by p = p(a, 2, t).

Macroeconomic variables There is a single macroeconomic vari-
able, the interest rate of the economy, denoted by r;. This is simul-
taneously the rate at which agents can borrow or lend wealth, that
is, there are no financial intermediaries.

Constitutive relations To simplify, we assume that the evolution
of the wage of each agent follows a mean-reverting deterministic dy-
namic 2 = —(z; — z), where Z represents a reference wage level. To
keep the presentation as simple as possible, we set Z = 1. This is a
rather arbitrary choice and many other alternatives are possible.

Microeconomic actions (controls) Agents in the economy are
assumed to choose their consumption levels, ¢;, for tg <t < T.

Microeconomic dynamic The state variables characterizing the

agents in the economy are governed by two ordinary differential equa-

tions. These are the following:

ay =z — Cp + 10

.t t — Ct + Ttay (3.10)
Zt = *(Zt — 1)

Microeconomic preferences We assume that agents are rational,
i.e., they maximize a certain set of preferences over the variables of
the model. In addition, we assume these preferences to be modeled
by an instantaneous utility function u = u(cy, ay, 2¢, 7). Because we
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are interested in modeling the economy for the future times s > ¢, we
consider the intertemporal counterpart of u, given by

J(c,a,z;t):/ e (e, ay, 24,75 ) ds. (3.11)
¢

The assumption of rationality yields

V(a7 Zat) = sup ‘](Cta Qt, Zt; t)

Ct

When it exists, V is called the value function of the (deterministic)
optimal control problem (3.10)-(3.11).

If V is regular enough, it is the solution of the following Hamilton-
Jacobi equation:

Vi—aV + H(a,z,1m,Va,V,,t) =0,
where the Hamiltonian H is given by

H(a,z,r, Vo, V.) = sup (Vaa+ V.24 u).
Moreover, the optimal control ¢ is given in feedback form by:

HQa(G’?ZaTa V(Lv‘/z) =zt — Cz + Teay,
qu (G,Z,’f’, Va7 ‘/tz) - _(Zt — ].)

Equilibrium conditions We assume that agents in the economy
can borrow and lend at the current interest rate, r;. To close the
model, one must assume that each dollar that is borrowed by an
agent was saved by another one. This condition is formalized by
requiring that

/ap(a,z,t)dadz = 0; (3.12)

the equality in (3.12) is referred to as zero net supply condition.

It is clear from (3.12) that r; depends on the density p. Therefore,
the interest rate encodes the dependence of V' on the density of the
population.
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Transport of the agents’ density Given (3.10), the agents’ den-
sity p(a, z,t) evolves according to the transport equation:

pila, 1) + (Dy, Hp), + (Dy. Hp), = 0. (3.13)

Meanwhile, agents are assumed to behave rationally, i.e., to choose
the optimal consumption level ¢f. Hence, (3.13) becomes

pila, z,t) + ((z = ¢ +ra)p), — (= — 1)p), = 0.

Then, the deterministic Aiyagari-Bewley-Huggett model can be writ-
ten as the following mean-field game system:

Vi—aV +H(a,z,m,Va,V,) =0
pi(a,z,t) + ((z = ¢" +ra)p), — ((z—1)p), =0,

together with initial conditions for the density p.

Analysis of the equilibrium condition The equilibrium condi-
tion (3.12) implies

0 ap(a, z,t)dadz = — /(z —c")pla, z,t)dadz.

T dt

Moreover,

%/(z —1)?pdadz = —2/(z —1)%pdadz.

Therefore, as one would expect,

/zpdadz — 1.

Thus, we obtain

/c*p(a,z,t)dadz -, (3.14)

as t — oo. The relation in (3.14) formalizes the intuitive notion that
the total consumption in the population must equal the total income.
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4

Economic growth and
MFG - deterministic
models

In this chapter, we examine models of economic growth with hetero-
geneous agents. We begin with the problem of wealth and capital
accumulation, with a capital-dependent production function. Then,
we investigate the role of a central bank that controls the economy’s
interest rate. Afterward, we discuss trade imbalances and interna-
tional trade. Then, we study the issue of price impact in regulated
markets. The model in Section 4.1 is a mean-field game where the
coupling between the Hamilton-Jacobi equation and the transport
equation is determined by an equilibrium condition. By introduc-
ing a macroeconomic agent, a central bank, the model in Section 4.2
becomes an optimal control problem of a mean-field game. Next,
the analysis of trade imbalances in Section 4.3 becomes an infinite
dimensional game between two agents, whose dynamics is given by
two mean-field games. Finally, the issue of price impact in regulated
markets, through taxation of trade imbalances, is considered in Sec-
tion 4.4. This is a mean-field game that depends on a price-impact
function (e.g. import duties).

38
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4.1 A growth model with heterogeneous
agents

Our first growth model is a simple wealth and capital accumulation
problem, with capital-dependent production. Here, we present its
basic structures and elements according to the outline in Section 1.2.

Microeconomic agents In the present model, a typical individual
in the economy has an amount a; of consumer goods and k; units of
capital, at time ¢. Consumer goods are used as the numerary of the
economy, in the Walrasian sense, which sets its price equal to the
unity.

Both the consumer goods a; and the capital k; have natural con-
straints. Borrowing constraints correspond to the inequality a; > ay,
for some ag < 0. Moreover, it is natural to assume that capital
is non-negative k; > 0. However, to simplify the discussion, we will
implement these constraints as soft constraints through a utility func-
tion.

The microeconomic distribution function p(a, k,t) determines the
distribution of agents in the state space. We suppose that p > 0 is
normalized, so that

/ pla, k,t)dadk = 1,
]RZ
for allt > 0.

Macroeconomic variables In our model, the only macroeconomic
variable is the (relative) price of capital, denoted by p;. For conve-
nience, we refer to

Wy = /(at + pike) dp(a, k, t)
as the total wealth of the economy.

Constitutive relations We suppose the economy has the following
constitutive relations. The first one is a production function F(k,p)
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that gives the total value (measured in consumer goods) of consumer
goods ©(k,p) and capital goods E(k, p), produced by an agent with
capital k£ at a price level p. In particular, we have

F(k,p) = O(k,p) + p=(k, p).

The functions © and Z take into account that agents are able to
change, at least partially, their production from consumer to capital
goods and vice-versa. The precise way in which this choice is made
is not relevant in this model.

Finally, the depreciation of the capital stock is governed by a
function g, depending on both the capital level k and the price p, i.e.,

g =g(k,p).

Microeconomic actions (controls) We assume further that, at
every instant ¢, each agent controls her consumption and investment
levels, ¢; and i;, respectively.

Microeconomic dynamics In the present model, the evolution of
the state variables is governed by two ordinary differential equations.
The stock of consumer goods is driven by the following:

dt = —Ct *ptit +F(kt,pt) (41)
In addition, the stock of capital varies according to

ke = g(ke,pe) + is. (4.2)

Microeconomic preferences Agents in the economy have pref-
erences about their consumption and investment levels, stocks of
consumer goods and capital, and the price level of the economy.
These preferences are represented by an instantaneous utility function
u = ule, iy, ar, ke, pe). Agents seek to maximize the intertemporal
counterpart of u, i.e.,

Via,k,t) = sup/ e*a(sft)u(cs,is,as,ks,ps)ds. (4.3)
t

Ct,lt

The assumption of rationality is critical in obtaining (4.3).
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Optimal control problem FEach agent in the economy faces an
optimal control problem. The function V' (a, k,t), defined in (4.3), is
called the value function of the problem (4.1)-(4.3). If V has enough
regularity, i.e., it is of class C', it solves the following Hamilton-Jacobi
equation:

Vila,k,t) — aV(a, k,t) + H(a,k,p,V,, Vi) =0, (4.4)

where the Hamiltonian H is given by

H(a,k,p,Va, Vi) = sup (Vad + Vi + u) ) (4.5)
c,t
Moreover, the optimal controls c¢; and i} are determined in feedback
form by the equations

{an(a/t,kt,pt,va,‘/k) = _C: - pﬂ': + F(ktvpt)7 (4 6)

Hy, (a¢, ke, pe, Vo, Vie) = g(ke, o) + 7,

where H = H(a, k,p, qa,qr) is given by (4.5).

Transport of the agents’ population Now, we discuss the evo-
lution of the agents’ density. To this end, we introduce the associated
transport equation. Because the agents’ state variables are governed
by (4.1) and (4.2), the equation that describes the evolution in time
of the population’s density is a transport equation. As before, we
denote by p = p(a, k,t) the density of the agents.

The assumption that agents act to optimize their preferences is
central to the optimal control problem discussed in Section 4.1. How-
ever, we note that the evolution of the agents’ population depends
upon the consumption and investment levels, according to (4.7). Be-
cause rationality implies that individuals shall consume c¢* and invest
i*, the population evolution is driven by the vector field (a, k), eval-
uated at these values. Then, we have the transport equation for p:

pr + (=" =pi” + F(k)) p), + ((9(k,pe) + %) p), = 0. (4.7)

Hence, using (4.6), (4.7) becomes

pi + (Hqyyp), + (Hyp), = 0. (48)
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Equilibrium conditions The equations (4.4) and (4.8) are cou-
pled by a market-clearing condition. This condition requires the ag-
gregate production of capital goods to match the aggregate invest-
ment, and is given by

/z’dp(a, k,t) = /E(k,p)dp(a,k,t), (4.9)

for every t > 0. This equilibrium condition determines the price level
Pt-

A mean field game model The mean-field game formulation of
the growth model is given by the coupling of (4.4) and (4.8):

{V}(CL]{,t) — O[V(G,k,t) + H(a7k7p7 Va7Vk) = 07 (410)

pt + (anp)a + (qup)k =0,

together with the equilibrium condition (4.9). In (4.10) we prescribe
initial conditions for p.

4.2 A growth model with a macroeconomic
agent

Building upon the previous section, we introduce a growth model
with a central bank acting as a macroeconomic agent. The central
bank controls the interest rate of the economy. Its aim is to balance
between price stability and economic growth.

Microeconomic agents As before, microeconomic agents are char-
acterized by their levels of consumer goods a; and stock of capital k;.

Macroeconomic agent The single macroeconomic agent in this
economy is a central bank. TIts state is determined by a quantity
A;, that represents its assets, and the distribution of microeconomic
agents p(a, k, t).
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Macroeconomic variables As before, the price level of the econ-
omy p; is a macroeconomic variable. In addition, the economy has an
interest rate, r;. This rate is set by the central bank, and, therefore,
it is a control variable for this macroeconomic agent.

Constitutive relations The constitutive relations of the economy,
namely, the production and depreciation functions, are the ones pre-
scribed in Section 4.1.

Microeconomic actions (controls) As before, the microeconomic
agents in the economy are assumed to control their consumption level
¢ and their investment ;.

Microeconomics dynamics The stock of consumer goods is driven
by the following:

[lt =Ty — Ct *ptit +F(k1‘ap1‘) (411)

Notice that (4.11) depends explicitly on the interest rate of the econ-
omy, 7;. The stock of capital varies according to

by = g(ke,pe) + iy (4.12)

We notice that, introducing a central bank in the economy does
not influence directly the dynamics of the capital accumulation, for
the interest rate is not included in (4.12). Meanwhile, because it
affects decisions of consumption and investment, the impact of r; on
the capital accumulation is encoded in the equilibrium condition of
the model.

Macroeconomics actions (controls) The central bank intervenes
in the economy by setting its interest rate, r;.

Microeconomic preferences In this setting, we assume the in-
stantaneous utility function of the microeconomic agents to depend
also on the interest rate r;. That is, u = wu(cy, i, ar, ke, pe,1¢). It
amounts to

Via,k,t) = sup/ efa(sft)u(cs,is,as,ks,ps,rs)ds.
t

Ctht
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Equilibrium condition We assume the equilibrium condition to
be given as in Section 4.1. In the context of this model, it is a market-
clearing condition as well.

Optimal control problem The microeconomic agents’ optimal
control problem is described by:

Vila, k,t) — oV (a, k,t) + H(a, k,p, 7, V,, Vi) =0,
where the Hamiltonian H is given by

H(aa kapvra Vaavk) :Sup (Vaa+ka+U> . (413)
The optimal controls, given in feedback form, are determined by

{an (atakt7ptartava7vk) = rfat - Cz _ptZ;f +F(kt7pt)7 (4 14)

Hy, (ay, ke, pey e, Va, Vi) = g(ke, o) + 45,

where H is given as in (4.13).

We notice the microeconomic controls in (4.14) are distinct from
those in (4.6). Moreover, a macroeconomic policy, when it exists,
depends on the microeconomic optimal controls and conversely.

Transport of the agents’ population As before, the dynamics
of the microeconomic agents’ and the optimal controls (4.14) yield a
transport equation. Under the assumption of rationality, this equa-
tion governs the evolutions of the agents’ distribution p(a, k,t). We
have:

pet((riay — ¢ = pii” + F(k,pe))p),+((g(k,pe) +1")p)y, = 0. (4.15)
When coupled with the optimization problem of the agents, (4.15)

leads to the following mean-field game system:

{Vt(a,k,t) - @V(&,k,t) + H(a7kaptartava7vk) = 07 (416)

pt + (an,p)a + (qup)k; =0,

where H is given by (4.13).
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Macroeconomics dynamics In the economy, the amount of con-
sumer goods a; that is neither consumed nor invested earns an in-
terest rate r;, set by the central bank. Therefore, the position of the
central bank A; is governed by the dynamics:

A = —rt/ap(a,ht)dadk. (4.17)

Macroeconomic welfare The macroeconomic agent aims at con-
trolling two quantities of the model. These are the price level of the
economy, p¢, and the total wealth of the system, given by

Wy = /ap(a,k:,t) —&—pt/kp(cuk:,t).

The central bank maximizes the welfare function of the economy,
given by U = U(A;, Wy, pt). The optimization problem faced by the
central bank is formulated in terms of the intertemporal counterpart
of U

o0

Sup/ eiﬁ(sft)U(As,Wg,ps)ds. (4.18)
Tt t

When it exists, the optimal control r} will be referred to as the

macroeconomic policy.

The function U can be taken to be general enough to accom-
modate various formulations. For example, a central bank may be
committed to keep the price level p; = 1, or in a certain neighbor-
hood of 1, where ¥ > 0 is a given constant, as in a typical inflation
targeting regime. Alternatively, the goal of the central bank may be
to sustain the economic growth.

Macroeconomic policy The macroeconomic policy is determined
by the control problem (4.18), where the control r; affects the macroe-
conomic state (A4,p) through the dynamic comprising (4.17) and
(4.16). Therefore, the optimization problem of the macroeconomic
agent can be regarded as the control problem of an ordinary differ-
ential equation (4.17) and a system of partial differential equations
(4.16).
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4.3 Economic growth in the presence of
trade imbalances

In this section, we propose a model of the economy in the presence of
trade imbalances. In brief, it means that the market-clearing condi-
tion stated in (4.9) fails to hold. Trade imbalances can be introduced
into the economy by various forces. Next, we distinguish between
trade imbalances in the setting of a closed (single) economy and the
case of international trade.

4.3.1 Single economy with a trade imbalance and
regulated prices

Trade imbalance in the setting of a single economy can have mul-
tiple causes. For example, the price level, p;, may be subjected to
distortions - as in the case of a central planner - or follow a dynamic
prescribed a priori. In what follows, we consider the setup of the
economy described in Section 4.2, except for the equilibrium condi-
tion, which is here modified to take into account that the market fails
to clear.

Unlike in the previous formulations, here, we do not assume the
price level, p;, to be determined in equilibrium. Instead, we suppose
it is regulated by a central planner, or any other entity external to
the economy. Because the price level is not determined by (4.9), we
say that a trade imbalance appears in the system.

Equilibrium conditions Trade imbalances quantify the difference
between the total investment in the economy and the production of
capital goods. Given an extrinsic price level p;, this quantity, denoted
FEy, will be given by

B = / idp(a, k. 1) — / =(k, p)dp(a, k., 1).

The case E; > 0 represents an excess of demand for capital goods,
whereas F; < 0 stands for an excess in supply. Therefore, for E; # 0,
the market does not clear.
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Microeconomic state variables In this setting, the stock of con-
sumer goods and the capital accumulation are governed, as before,
by (4.11) and (4.12), respectively.

Microeconomic preferences Agents in the economy may have
preferences over the trade imbalance E;. These are encoded by the
instantaneous utility function u = wu(ey, iy, at, ke, pt, 74, Et). Hence,
the intertemporal counterpart of u becomes

V((l,k‘,t) = sup/ e_a(s_t)u(csaisvasvksvpsvrsts)ds- (419)

Ceyir Jt

Optimal control problem The microeconomic agents in the model
solve the optimal control problem described by (4.11), (4.12) and
(4.19). When the value function V' has enough regularity, it solves

‘/t —aV + H(a7k7pt,T,E,Va, Vk) = O,

where the Hamiltonian H is given by

H(a,k,p,r, B, Vo, Vi) = sup (vaa ik + u) . (4.20)

The optimal controls associated with these problems are given in
feedback form by the system

an (at7kt,pt,7’t,Et7Va,Vk) =Tta¢ — CI _ptzr + F(ktvpt)a
Hy, (ag, ke, pe, e, By, Vo, Vie) = g(ke, pe) + 5.

Transport of the agents’ density Under the assumption of ra-
tionality, the evolution of the microeconomic agents’ density p is gov-
erned by the following transport equation:

Pt + (an (at7 ktapt; Tty Et7 Va7 Vk)ﬂ)a
+ (qu (at7 kt7pta Tty Eta Vaa Vk)ﬂ)k =0.

The mean-field game system associated with the single economy
in the presence of trade imbalances is

(4.21)

Vila,k,t) — aV(a, k,t) + H(a,k,pt,7, B, Vo, Vi) =0,
Pt + (anp)a + (HQkp)k =0,
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where H is given by (4.20).

Macroeconomic preferences The preferences of the central bank
are also affected by the trade imbalance. The welfare function be-
comes U = U(A¢, Wy, pe, Et), where W, is the total wealth

W, = / apla,k,t) + py / kp(a, k).

As before, the optimal control problem of the macroeconomic agent
is formulated in terms of the intertemporal counterpart of U

max/ e PEU (A, W, ps, Ey)ds. (4.22)
t

Tt

Macroeconomic policies The macroeconomic policy is determined
by the control problem (4.22), where the control r; affects the macroe-
conomic state (A, p) through the dynamic comprising (4.17) and
(4.21). Therefore, the optimization problem of the macroeconomic
agent can be regarded as the control problem of an ordinary differ-
ential equation (4.17) and a system of partial differential equations
(4.21).

4.3.2 Two countries economy with a trade imbal-
ance

In this section, trade imbalance is introduced in the economy through
an export and import flow. There are two countries in the economy,
namely country 1 and country 2. The economy of the country ¢, with
i =1, 2, is defined as in Section 4.3.1, with the additional restriction

E! + E} =0, (4.23)

for every t > 0.

In this setting, given the interest rates of the two countries, the
economy is completely characterized by two mean-field game systems,
which we describe next.

The price levels in both countries may be identical, in which case
it is determined by (4.23). Alternatively, one of the prices may be



[SEC. 4.4: PRICE IMPACT IN REGULATED MARKETS 49

regulated. In that case, the price levels in countries 1 and 2 may
differ, i.e., p} # p?. Also, the production functions F! and F? can
be different, reflecting the existence of distinct technologies in those
countries. The associated MFG system is given by

Vi(al, k' t) — aVi(a', k' t) + H(a', k', pi, E", VI, Vi) =0,
i+ (Hip'), + (Hiy 1), = O

(4.24)
fori=1, 2.

A game between two macroeconomic agents FEach of the cen-
tral banks controls an interest rate r; and seeks to maximize

o0

sup [ e P00 (AL WL, Elds,
Ty t

where the state of the system is described by the mean-field games

together with their assets dynamics

Al = —ri/aip(ai,ki,t)dadk. (4.25)

Therefore, this formulation of the growth model in the presence of
trade imbalances can be regarded as a non-cooperative game for two
macroeconomic agents. Their dynamics are given by (4.25), under
the constraints (4.24).

We notice that the MFG systems for both countries are coupled
through (4.23).

4.4 Price impact in regulated markets

As in Section 4.3, we assume the price level of the economy to be
driven by an extrinsic dynamic, instead of the balance condition in
(4.9). This rigidity in the market entails distortions in the system
called trade imbalances and encoded in the quantity FEj.

In the setup of Section 4.3, trade imbalances were implicitly taken
into account by the agents. In what follows, we assume these distor-
tions to impact explicitly the dynamics of the consumer goods’ stock
(for instance, as import taxes).
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Price impact and the consumer goods’ dynamics We assume
that the price level of the economy is regulated extrinsically, which
gives rise to trade imbalance, F;. However, in the present setting, this
quantity is monetized at a rate A\(E;). Then, the dynamics governing
the stock of consumer goods becomes:

ay = cy — (pr + ME4)) i + F(ke, pt)-

The rate A(E:) can be regarded as a price impact. We assume that
A(0) = 0; furthermore, A(¢) < 0 when ¢ > 0 and A(g) > 0 when ¢ < 0.
These assumptions on A reflect intuitive notions behind the so-called
tatonnement process. We assume this function A is an important part
of the model. Here, we do not consider any macroeconomic agent,
although A can be chosen by the government by imposing import
taxes, for instance.

Optimal control problem As before, we are interested in

oo
Va,k,t) = sup/ e_“(s_t)u(cs,is,as,ks,pS,Es)ds.

ct Jt
Provided certain regularity conditions hold, V' solves
‘/t —aV + H(avkaptan Vua Vk) = 07
where

H(a, k,p, B, V,, Vi) = sup (Vaa Vi + u) . (4.26)

c,t

The optimal controls, given in feedback form, for both the macroe-
conomic and the microeconomic agents are jointly determined by

{an = —cf — (pe + ME)i; + F (ke pr), (4.27)

HQk = g(ktvpt) + i;fkv

where H = H (ay, ki, pt, Et, Vo, Vi) is given by (4.26).
Next, we discuss the transport of the microeconomic agents’ den-
sity, under the assumption of rationality.
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Transport of the microeconomic agents’ population The evo-
lution of the agents’ density p is governed by a transport equation of
the form:

pilaskyt) + [(—e = (pe + ME))i + F(k,po)) (4.28)
+ [(9(k,pe) + 1) p];, = 0.

By assuming rationality of the agents, i.e., the vector fields in
(4.28) are evaluated at the optimal controls determined by (4.27), we
get the following MFG:

Vila, k,t) — aV(a,k,t) + H(a,k,p:, E,V,, Vi) =0,
pt + (anp)a + (qup)k =0,

where H is as in (4.26).

Bibliographical notes For a MFG formulation of the price impact
model in the context of the Merton problem, see [87].
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Mathematical analysis I
- deterministic models

In this chapter, we develop the mathematical tools for the analysis of
the problems put forth in the previous chapters. For the illustration
of the main techniques, we examine the model outlined in Section 4.1,
and we consider the finite horizon case. We address several mathe-
matical questions. Firstly, we revisit the Verification Theorem (see
Section 2.1) and prove that it holds in the setting of the growth model
with heterogeneous agents described in Section 4.1. Next, we study
monotonicity and concavity properties of the value function. After
that, we prove the Pontryagin maximum principle, and establish the
optimality of certain trajectories that solve suitable ODEs. Subse-
quently, we show the uniqueness of optimal trajectories. Finally, the
chapter concludes with a discussion of the N-agent approximation.

5.1 A Verification Theorem

Here, we focus on the optimal control part of the model presented
in Section 4.1 and state and prove a Verification Theorem. Since
we work in the finite horizon setting, we start by fixing a terminal
instant T' > 0, and adjust the utility functional (4.3) accordingly. We

52
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consider the dynamics described by (4.1)-(4.2) and

T
V(a,k:,t) = sup/ e_o‘(s_t)u(cs,is,as,k‘s,ps)ds (43,)
t

Ctyt

+ eia(Tit)VT(aT, kT),

where V : R? — R is the terminal cost, which is a given data of the
model.
Next, we show that a solution U € C*(R? x [tg,T]) of

U — aU + H(a,k,p,Us,U) =0 in R3 x [to,T) (5.1)
Ula,k,T) = Vr(a,k) in R3, '
with
H(a, k,p,Uq, Uy) = sup (Uad LU+ u) , (5.2)
c,t

is the value function of the aforementioned optimal control problem,
provided the instantaneous utility is strictly concave.

Theorem 5.1.1 (Verification Theorem). Let U € CY(R? x [to, T]) be
a solution of (5.1) and assume that the instantaneous utility function
u s strictly concave. Then, U is the value function associated with
the optimal control problem (4.1)-(4.2) and (4.3’).

Proof. As before (c.f. Section 2.1), we have
e T DU (ar, kr,T) = Ulas, ki, t) (5.3)

T
_ / e==0 [U, — all + Uyd + Uyk] ds.
t

In addition, (5.2) yields
Us — U + Uy + Uk < —u. (5.4)

Inequality (5.4) combined with (5.3) yields

T
Ulag, ki, t) > / e~ yds + efa(Tft)U(aT, kr,T),
t



54 [CHAP. 5: MATHEMATICAL ANALYSIS | - DETERMINISTIC MODELS

hence
Ula,k,t) > V(a,k,t).

Because wu is strictly concave, there exists a unique pair (¢*,i*) so
that

c*,1" € argmax (Uad + Upk + u) .
Then, by Theorem 2.1.1, we have

Ula,k,t) =V(a,k,t).

5.2 Monotonicity and concavity

Here, we discuss two important qualitative properties of the value
function, namely, its monotonicity and concavity. Since the value
function represents the intertemporal utility of an agent, starting off
with higher levels of utility at the initial instant, would allow her to
sustain higher utility levels for future times as well. Indeed, an agent
can trivially keep the previous investment and consumption levels
and be at least not worse off. This explains the importance of the
monotonicity.

Regarding concavity, it encodes the decreasing marginal incre-
ments of the utility. This is a cornerstone assumption in economic
theory. Hence, this property for the intertemporal utility functional
is critical in establishing the soundness of the model.

Throughout this section, we assume that p is fixed. We begin
with a technical lemma;:

Lemma 5.2.1. Suppose the production function F' is locally Lipschitz
and non-decreasing in k, and the depreciation function g is locally
Lipschitz in k. Fiz initial states (a', k') and (a?,k?). Fiz a control
(c;,ir). Suppose a' < a? and k* < k2. Let (a'(t),k*(t)) be a solution
of

at = —cf —pyiy + F(kE py)

k' = g(k%7pt) + Z:a



[SEC. 5.2: MONOTONICITY AND CONCAVITY 55

Clto = Qaop,
[ )
ki = k.

Then a} < a? and k} < k2, for all t > t.

with

Proof. Because k} < k2, the uniqueness of solutions of ordinary dif-
ferential equations implies that k} < k2, for all + > 0. Then, by the
monotonicity of F', we have F(k},p;) < F(k?,p;). Therefore, a} < a?
and so atl Satz, for all t > tg. O

The first main result of this section is the monotonicity of the
value function in the wealth variables (a, k).

Proposition 5.2.1. Suppose that:

1 the instantaneous utility function u is non-decreasing in the wealth
variables (a, k);

it the production function F'(k,p) is non-decreasing in k;
iii the depreciation function g(k,p) is locally Lipschitz in k.
Then, the value function is non-decreasing in the (a, k) variables.

Proof. To simplify the proof, we suppose the existence of maximizers
for (4.3’). This assumption is not essential, since the argument can
be modified recurring to e-optimal trajectories.

Fix initial states (a', k') and (a2, k?) such that a? > a'! and k? >
k'. Let the optimal consumption and investment level for the first
state be (¢f,if). Then, we have

T
Vay, ki,t) = /e_o‘(s_t)u(c;i;,a:,kg)ds.

t

If we choose for the second state the same investment and con-
sumption levels, this choice is clearly suboptimal. Hence, we have

—a(s—t * ok
el )u(cs,zs,as,ks)ds7

V(a27 kQ;t) Z

Tt~
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where (as, ks) is driven by the controls (cf,i}), with initial state
(a2, k2). According to Lemma 5.2.1, af < a; and kf < ki, for all
t > ty. Hence,

T
—a(s— t
a23k27 / ( qazqaas‘aks)ds
t

> / e~ y(c it a7, k2 ds
t

=V(ay, k1,t).
This proves the monotonicity of the value function. O
Next, we show that the value function is concave.
Proposition 5.2.2. Suppose that:
i u is concave in the microeconomic variables (c,i,a,k);
it u 18 non-decreasing in the wealth variables (a,k);

1 the production function F is non-decreasing and concave in the
capital variable k;

w the depreciation function g is concave in the capital variable k.
Then V(a, k,t) is concave in (a, k).
Proof. Consider two initial states (a', k') and (a?, k?). Suppose that
the optimal consumption and investment levels for these two states
are, respectively, (ct, i) and (c2,i2). Consider the state (a;, k;') given
by

a} = (1= Naj + \a?,

k) = (1= Nk + M2,
with A € (0,1). Next, we show that

V(a} kM) > (1= NV (af, ki t) + AV (af, k7, 1).
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Define

=(1- A)C% + )‘Cfa
= (1 — \)i} + N2

A
C

-\
23

This strategy yields a sub-optimal trajectory for an agent with initial

conditions ((1—A)a' +Aa?, (1 —\)k! + Ak?). Such trajectory, (ay, k)
is obtained by solving

at = _Ci\ _ptli\ + F(Etapt)7
ke = i3 + g(ke, pr).-

We claim that

— > A
{‘” =9 (5.5)

ke >k}
Using the concavity of the depreciation function g, we get:

ift - Q(Etapt) > kf\ - g(kt/\apt)-

Hence k; > ki‘ for all t > 0.

Next, we observe that, because of the concavity of the production
function F', we have:

ay — F(ke,pe) = —(1 = Neg = Aep = pe((1 = N)ig + Aif)
= (1= XN(ay — F(k;,pe) + Mai = F(k7,pr))
= a; — (1= N F(k},p:) = AF(k, pr)
> ap — F(k,pe) > @ — F(ke, pr).

Then, @; > a;' and (5.5) is proven.
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Furthermore, inequality (5.5) and matching initial conditions yield:
T
V(ai/t\v kt)\vt) > / mele t)u(c)\ 'L/\ as, ]_fs)ds

s778)

S’ S?

T
Z/efa(s t)u A )\ CL k,)\)d
t
2(1—/\)/6""(5 Ducl,il,al, k)ds

+>\/ —al=ty (2, 2, a2, k2)ds

= (1= NV(al, kL t) + AV (a2, k2, 1).

Hence, the proposition is established. O

5.3 Existence of optimal trajectories

In this section, we address the existence of the optimal trajectories
for (4.3). Since the resources are limited in the economy, we suppose
here that the consumption and investment levels of an individual
agent are bounded by some natural constraints. That is,

lef <C and |i| <C, (5.6)

where ¢ and i are, respectively, the consumption and investment levels
and C' > 0 is some constant, chosen sufficiently large. As before, to
make the presentation lighter, we work in the finite horizon setting.

Theorem 5.3.1. Under the natural constraints (5.6), and given a
continuous price dynamics ps, the problem

T
sup / e_o‘(s_t)u(cs, is, s, ks, Ds)ds (5.7)

Ct,it

admits an optimal trajectory.
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Proof. We break the proof into two steps.
Step 1. We claim that the supremum in (5.7) is finite.

To prove this, we observe that under the natural constraints (5.6)
all feasible trajectories, i.e., those satisfying (4.1), (4.2), are univer-
sally bounded. Namely, there exists a constant M > 0 such that

las|, |ks| < . (5.8)

Let k4 be the solution of the ODE

I;s = 6"_9(];75;175)7
ko = ko.

Since |is| < C, due to comparison principle for ODEs, we obtain that
ks < ks <|lklloo, forall selt,T].

Similarly, if
Es = _6—’_ g(Esvps)a
EO = k07

we have

ks > ky > —||kl|oo, forall selt,T). (5.9)

g —

This shows that the capital level has uniform bounds. Next, we
address the consumer goods level. For that, let a5 be such that

{as = C +psC + F(|lkl|oc, ps),

ag = agp.

Because F' is monotone increasing in the capital £ and, moreover,
ks < ks, |cs| < C, |is| < C, we obtain a5 < as. Consequently,

as < as < ||a)|co, forall selt,T). (5.10)

Similarly, for a, such that

a, = _é_p86+F(_||EHOO7pS)7
QO = agp.
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we have
as > a, > —|lallcc, forall se[t,T]. (5.11)

Combining (5.3), (5.9), (5.10) and (5.11), we get (5.8), where
M = max{|[klloo, | £lloo, llalloo, llalloo}-
Since u is continuous, we obtain
A = sup{u(c,i,a, k,p) s.t. |c|, |i| < C,lal,|k] < M, |p| < |Ipllec} < 00.

Accordingly, for any control (¢, i) such that (5.6) holds, we have:

T T
/6ia(57t)u(057isaa97 s’ape s < K/e o d5 < o0.
t t

Therefore, the supremum in (5.7) is finite.
Step 2. An application of the direct method of calculus of variations.
Let (¢”,i™,a™, k™) be a maximizing sequence for (5.7), i

T T
/e—oc(s—t)u(C?’Z?’a kn7ps) _>Sup/e_a(s_t)u(087i87as;ks7ps)

c,t
t

From (5.6), we have that
™ loos [l lloe < C-

Consequently, we can extract a weak-* converging subsequence (which,
by abuse of notation, we still denote by ¢™,4™). That is, there exist
¢, 1 € L™ ([t, T]) so that:

T

/c?d)(s) +alp(s)ds — /CSQS(S) + as(s)ds, (5.12)

t

for all ¢, v € L ([t,T)).

Furthermore, we have that the sequences {a”}, {kI'}, are uni-
formly bounded, due to (5.8), and equicontinuous, due to (5.6). Hence,
by the Arzela-Ascoli theorem, there is a further subsequence, which
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we again denote by a”, k™, and continuous functions a and k such
that

ay — as and kI — ks, uniformly in [t,T]. (5.13)

We have the identity

S

vdr -+ [ gk p)ir

t

kTL

S

ﬁ\’ﬂ “\m

S

X[t7s](7')i¢d7'—|—/g(k:_l,p.r)d’r.
t

Now, using the uniform convergence, in (5.13), and the weak-* con-
vergence, in (5.12), and passing to the limit on both sides of the
former equality, we get

S

T
ks :/X[t,s](T)i‘rdT""/g(krapr)dT
t t
:/deT—i—/g(kT,pT)dT.
t t

ifs == is +g(k37ps)'

Therefore,

Similarly, we can prove that
ds = —Cs _psis + F(k87ps)~

Hence, (cs,is,as, ks) satisfy (4.1) and (4.2). This means that the
quadruple (cs,is,as,ks) is a candidate for a maximizing trajectory.
Note that the weak-* convergence and uniform convergence yield

|CS|7 |/LS| Sé (5 14)
|as|, |ks| <M '
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Using the concavity of u, we get that

T T

/ ey (el i al kT ps) < / e~ u(cy, ds, ag, ks, ps)
t t
(5.15)

e D ou(es, is, as, ks, ps) (ch — c5)ds
e I Diu(cy, i, as, ks, ps) (i — is)ds
e~ Dyu(cs, is, as, ks, ps)(a? — as)ds
e~ Dyulcs, is, as, ks, ps) (kI — ks)ds.

Since u is concave, it is locally Lipschitz. Hence, due to (5.14), we
have that

|Dou(cs,is, as, ks, ps)| < L
|Diu(cs,is, as, ks, ps)| < T
|Dau(cs, is, as, ks, ps)| < L
|Dru(cs, is, as, ks, ps)| < L,

for some constant L > 0. This, combined with (5.15), (5.12) and
(5.13), yields

T

—a(s—t)

lim [e u(cl iy, ay, ks, ps)ds

s1 Vs

t

T
S /e—a(s—t)u(cs, is’ as, ]{;s’ps)dS.
t
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Since the sequence (¢",i"™, a™, k™) is maximizing, we conclude that

the trajectory (c,1,a, k) is a maximizer. O

5.4 Optimal trajectories

As discussed previously, the Pontryagin maximum principle is a set
of necessary conditions for optimality. However, under suitable con-
cavity constraints, these necessary conditions are also sufficient for
optimality.

Before proceeding, we present an auxiliary result.

Lemma 5.4.1. Suppose the function x solves the backwards ordinary
differential equation

{—a’c<s> = a(s)z(s) + f(x(s), ),
xz(T) =0.

where f > 0. Then, we have that xz(s) > 0 for s € [0,T].

(5.16)

Proof. To establish this lemma, we need to use the comparison prin-
ciple for ODEs. Note that, because f > 0, the function x = 0 is a
subsolution for (5.16). Therefore, by the comparison principle, we
have that z(s) > 0 for s € [0,T]. O

Proposition 5.4.1. Suppose that:
i u is jointly concave in the (c,i,a, k) variables;
it w is non-decreasing in the wealth variables (a,k);

1 the production function, F', is non-decreasing and concave in k,
for p fized;

w the depreciation function, g, is concave in k.

Let (a%,kY) and (g, q;,) be a solution of the Hamiltonian ODE

57°7s

= qa(asv 57ps>qasans)>
q ((ls, s,p37Qas,ka) 517
—a(s— — —a(s— t)H k ( : )
Qa‘;) € (a97 87p9aQa87ka)
(

(e s qks) —als— t)Hk(asvksaps>Qas7ka)a
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with initial-terminal conditions

as = ao,
kg = ko,
q;T = 07
g = 0.
Then, q}s, qis > 0, for 0 < s < T and (al, k}) is an optimal tra-

jectory corresponding to the optimal controls (c%,i%), that are jointly
determined by

(5.18)

an(a87kSapsaQasans) = _C: - psi: + F(k87ps)a
H%(as7ksaps,Qasans) = g(ks,ps) + i3

Proof. The Hamiltonian H and the utility function u satisfy

u(c,i,a,k,p) SH(CL,kapa Qaan)
- qa(_c _pZ + F(kap)) - Qk(Z =+ g(kap))v

where equality holds if and only if

(5.19)

HQa (a?k7p7 qa7Qk) = —C—pZ +F(kap)7
Hgy, (a,k,p, qa qr) =i+ g(k,p),

or, equivalently,

(5.20)

Dcu(c,i,a,k,p) = Ga,
Diu(c,i,a, k7p> = GaP — Gk-

In addition, the derivatives of H and u satisfy the following relation:

Hk’(aa kap7 qa; Qk') = Dk’LL(C, i, 0, k7p) + ankF(kvp) + Qk'Dkg(kap)
(5.21)
Let ps be given, and (as, ks) solve (5.17). In addition, let (cs,s) be
defined by (5.18). Since we assume that u is non-decreasing in ¢, we
have that

{Ha(a, k,p,qa,qx) = Dau(c,i,a,k,p),

Qas = Deu(cg, ig, ag, kg, ps) 2 0.

S
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Regarding the variable ¢, because of (5.17) and (5.21), we have that

= (Drg(k3,ps) — @) qs + Dyu(cy, iy, al, ki, ps) + 45 DeF (K3, ps)-

Because Dyu(ck,i%,a% kX, ps), DpF (kX ps), and ¢, > 0, Lemma
5.4.1 yields

qis >0, for s € [0,7T].

Furthermore, the concavity of u yields

oo oo

/67(1(570“(057is;as»ksaps)ds7/6 ofs= t)u(csvzs,asvks,ps)d
t t

< /e—a<s—t> (Deu(...")(es — ) + Dyul. . .*)(is — i¥)
+Dgu(...")(as —al) + Dru(...") (ks — k}))ds

(o}

B /eia(H) (gas(cs = €5) + (dasPs — G ) (is — 45)

Hy(...")(as — ay)
( k(") = Qo D F (K, ps) — s Drg (K5, ps)) (ks — k3))ds

oo

/e_“(é t) (qas (cs +isps — ¢t —iips — DpF (K%, ps) (ks — kL))
t

*qks (Zs - Z: - Dkg(k:aps))

FH, (.. ) as — al) + Hy(.. ") (ks — k;)) ds
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r —a(s— * (- . % d —a(s— * *
:/—6 ( t)qas(as _as)—‘r% (6 ( t)qas) (as _as)
t

—a(s—t) * (- % d —a((s—t) * *
—¢ ( t)qk's(ZS - Zs) + % (6 ( t)qks> (ks - ks)ds

oo

+/e_a(s_t)q;s(F(k8’pS) - F(k;(7ps) - DkF(k:7ps)(kS - k:))

t

+e N gr (g(ks, ps) — g(kZ,ps) — Drg(ks,ps) (ks — k7))ds
<0.

The last inequality follows from a few elementary observations. Be-
cause of (5.17), and the matching initial and terminal conditions, the
first integral vanishes. Moreover, the second integral is non-positive,
due to the concavity of the production function F' and the deprecia-
tion function g, combined with the inequalities ¢, g;, > 0. O

Remark 5.4.1. The variables (qa,qx) are called adjoint variables.

5.5 The Hamiltonian system and optimal
trajectories

In the previous sections, we have shown that if the utility function
u, the mixed production function F', and the depreciation function
g are concave in the capital variable k, then the value function is
monotone and concave. In addition, the solutions of the Pontryagin’s
maximum principle (or equivalently the Hamiltonian trajectories) are
maximizers. Here, we show that the Hamiltonian system satisfies
certain monotonicity conditions.

We consider the finite horizon problem without discount factor,
to simplify the presentation.

In this case, the Hamiltonian system (5.17) takes the form

as = Hy, (as, ks, Ds, Qas, Ghs),
ks = Hy, (a5, ks, Pss Qass Qhs);
Gas = _Ha(amks,meIaSanS)a
Grs = —Hi(as, ks, s, Qas, Qks),
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with initial conditions ag = a(0), ko = k(0) and terminal conditions
qaT = QG(T)7 qkT = qk(T)

We introduce the operator

da a@ + H, (as s, Dss das, Qrs)

A gk _ k +qu (CLS 57p57Qaquks) (522)
a _Qas - (as 571057%5,%5)
k —ka - (as sy Ps>Yas, ka)

We claim that this operator is monotone; let x; = (qis,q,’;s,as,ké)

fori = 1, 2. An operator A: H — H is said to be monotone if:

(Ax1 — Ax2, x1 —Xx2)y >0,

for all trajectories (ql,,qi,,al,kl) and (g2, q,, a2, k?) that satisfy
the appropriate initial and terminal conditions and q_,, ¢}, ¢2,, 7, >
0, where H is a Hilbert space and (-,-)y is the inner product in H.
For ease of notation, we drop the subscript H in what follows.

Proposition 5.5.1. Suppose that

1 the utility function u is concave;

7 the production function F is concave and increasing in k;

11 the depreciation function g is concave in k.
Then, A given by (5.22) is a monotone operator.

Proof. Firstly, from Proposition 5.4.1 we have that ¢}2, qks > 0.
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Furthermore,

(Axi — Ax2, x1 — x2) (5.23)
T

= [(cat 4 adah - ) + (R + Rk - )
0

+ ( Qas + qas)(a’ - a2) + (_(jlis + qlzs)(k; - k?)ds

T
+/ ks Dss ass Qrs) = Ha, (a3, k2,950 Gass dis)) (das — das)
0
+  (Hg(ag g,pe,qm,qu) Hy, (a2, k2, Ds, Qo Gits)) (s — dis)
+  (=DaH(ag, kg, Pss dass Ghs) + DaH (a3, KF, pss @i, 6s)) (ag — a3)
+ (- DkH al, s,ps,qas,qks)+DkH(ag7ks,ps,qas,qu)) (ks — k2)ds.

For the first integral, note that

T
/ CL + a qas - qgs) + (_ki + ki)(‘]/}:s - qzs)
0

+ (_qas + qas)(ai - af) + (_Qés + ql%s)(k; - kf)ds

T
d
[ 5 (el v aah, — g + (K + k) gk, — k)

0
0,

due to the initial and terminal conditions.

Next, we write the (a, k, ¢4, g ) variables in terms of the (¢, i, a, k)
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variables. For that, we use (5.19) and (5.21) in (5.23) and get that
(Ax1 — Axz, x1— X2)

(it + g(kips) — i3 — g(k2,ps)) (Ghs — dis)

1
s

T
= / (—ct = psiy + F(k},ps) + 2 + psit — F(kZ,ps)) (qas — q2s)
0
+
+ 2
+

(_ua(c ’isvasvkiva) + ua( i,ls,as,k‘i,pS)) (ai - ai)
(*uk(ci’ .;7 klva) Jruk( Cs» sa kQaPS)) (k; - k?)
- q;st(ks7pS) + qksgk(k;vps)) (k; - k?)

+ (@2 Fr (k2. ps) + Grsgu(k2,ps)) (kL — k2)ds.

After rearranging the terms, and using the concavity of the functions
F and g together with the positivity of ¢l and q,i’sz, we obtain the
following inequality:

[ ke (P20 PR )~ D212 kD)
0
— g (F(/anps) — F(kZ,ps) — DiF (K7, ps) (kg — k2))
— s (9(k2,ps) — g(kL, ps) — Drg(kl, ps) (k2 — kb))
— dis (9(ks,ps) — 9(K2,ps) — Drg(kZ,ps)(ky — k2))
(qicqm)(c *C) (Pshs — Ghs — Pslas + s) (i — i2)
— (Dauley, iy, al, kg, ps) — Dau(c?, i2, a2, k2, ps)) (af — a3)
— (Drulcs, iy, ag, kg, ps) — Drul(cl, i3, a2, k3, ps)) (kg — k2)ds

T
> [ —(ah — (e =) — (ks — gk~ + R0 )

(D u( s? 57 klvps) D u( 57 57 k27p8)) (CL _a’2)
(Dku( a kl,ps) - Dku(ci,zg,as,kg,ps)) (ks - kf)ds.
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By (5.20), the previous expression yields

T
/ - (DCU(CL s7a k17p8) - DCU(C%ﬂZwa’ k27p8)) (Ci - C%)i
0

- (Diu(c‘; saa klaps) Dzu(cg7 saa kZapS))( _’L2)

- (Dau(cl kl’pS) Dau(cs, (PERY 7]75)) (ai - ag)
(c2

- (Dku(cia sva k17ps) _Dku Css1 saasaksap‘i)) (k; - kf)ds

>0,
due to the concavity of u. Thus, we have
(Ax1 — Ax2, x1 —x2) 20,
which finishes the proof. O

Remark 5.5.1. Furthermore, let u be uniformly concave, i.e., the
inequality

m&iaw&m—m%ﬁfxm»

— Du(c?,i?,a% ky,p) - (¢t — 2, it —i%,at —a® k' — E?)

< _CH(C - 027 Zl - Z27 ap — GQ, kl - k2)||2’

holds for all ¢'2,i%2, a2, kM2, where C > 0 is some constant. Then,
we obtain a stronger inequality:

(Ax1 — Axz2, x1 — Xx2) (5.24)
T
> C [eh =P+ (i = P + (o} — P + (k) — k).
0

If u is strictly concave, (5.24) yields
(Ax1 — Axz2, x1 — x2) > 0,

if X1 # Xa-

As we show in the next corollary, this inequality allows us to prove
the uniqueness of the optimal trajectories.
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Corollary 5.5.1. Suppose that

1 the utility function wu is strictly concave;
i the production function F is concave and increasing in k;

1 the depreciation function g is concave in k.

Then, there exists at most one optimal trajectory

Xs = (QaSa Gks, Qs ks)
Proof. Suppose there are two optimal trajectories:
11 131
X1 = (qa37 ks Qg5 ks)
and
2 2 232
X2 = (qas’ Aiss Qs ks)’

with the same initial-terminal conditions but y; # x2. Then,
AX1 = AX2 =0.

Hence,
(Ax1 — Ax2, x1 —x2) = 0,
which is a contradiction, so the optimal trajectory is unique. O

Theorem 5.5.1. For arbitrary initial consumption and capital level,
there exists a unique investment and consumption plan that maxi-
mizes the objective functional in (4.3).

Consequently, from the classical optimal control theory, the value
function is differentiable. Therefore, it solves the Hamilton-Jacobi
equation in the classical sense.

Theorem 5.5.2. The value function V defined by (4.3) is of class C*
and solves the Hamilton-Jacobi equation (4.4) in the classical sense.

Proof. Since the optimal trajectories are unique for every initial con-
sumption and capital level, we obtain that the value function is differ-
entiable at all points. Hence, it satisfies the Hamilton-Jacobi equation
in the classical sense rather than in the viscosity sense. Furthermore,
since V' is concave in (a, k) variables, it is continuously differentiable
in (a, k) and the Hamilton-Jacobi equation yields that it is also con-
tinuously differentiable in the time variable . O
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5.6 N-agent approximation

Here, we examine the case of an economy with N-players. Then, the
initial distribution of the agents has the form

1 N
P=5 ;5@[,,&)7 (5.25)

where (a!, k') are the initial consumer and capital goods levels for
each of the agents, [ = 1,2, ---, N. According to our earlier anal-
ysis, if the price ps is given, then under suitable conditions on the
utility function u, production function F' and depreciation function g,
there exists a unique evolution p, that satisfies the mean-field game
equation (4.10).

If the initial distribution pg of is an average of N point masses,
it is not clear whether or not ps preserves this configuration for the
future times, s > to. Heuristically, this means that the agents “do
not split”. This is natural because an agent cannot use two different
strategies at the same time.

Our aim, in this section, is to suggest a way to construct such a
solution. Fix a price evolution ps. For every agent [ € {1,2,--- , N},
consider the Hamiltonian system

Sl l l l !
ag = HQa(asvks7pquas7qk:S)7
.l

ks

= HQk (a'ls7 ki7ps7qzs’ qgcs)7
d ([ —a(s— (s
- (e os t)q(lzs> — e—als t)Ha(ai,ki7ps7qés,q§€S)7

_% (e—a(s—t)qés) — e—oz(s—t)Hk(ai,, ké,ps, q(lzqullcs)v

together with initial-terminal conditions

(5.26)

al = d!,

kL =k,

QELT =0,

q(lzT =0.
As we have shown earlier, this system possesses a unique solution.
Moreover, we have the following identities:

dhs = Va(al, kL, ), b, = Vi(al, KL, ).
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Next, we construct a solution to (4.10).

Proposition 5.6.1. Let (a', k') € R%, [ =1,2,---, N, be any initial
consumption and capital goods levels and assume that pg is defined as
n (5.25). Furthermore, suppose that (al, k') is the unique solution
of the system (5.26). Define ps as

N
E (al,kb)

Then, the couple (V, p) solves (4.10).

Proof. The second equation in (4.10) is a transport equation with
velocity field (V,(a, k, s), Vi(a, k, s)). Since the transport equation is
linear in the measure p, to prove that ps, defined by (5.26), solves
the transport equation, we just need to verify that p, given by

ph = O(a k),

solves the transport equation for all [ € {1,2,--- | N}. The trajectory
(al, kL) satisfies the ODE

‘:Lls = qa( ks,ps, Va(a ls7ki,s) o(ag ; kl s))

ki = q}c(a’wks?pé’?Va(ai"ki s), Ve (aa7ki7 s))-
Hence, pl satisfies the transport equation (see Section 2.2) and the
proof is complete. O

All our previous analysis was based on the assumption that the
price evolution pg is given. To find the price ps, we proceed as fol-
lows. We fix an arbitrary smooth evolution ps of the price. Let the
trajectories (a!, k') be defined as in Proposition 5.6.1. Suppose p; is

such that

N N

il = Sk, ), (5.27)
=1 1=1

where the control 4. is defined in the feedback form (4.6).
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If ps = ps, then we have an existence result for the mean-field sys-
tem (4.10), where we also prove the existence of the equilibrium price.
Hence, the problem reduces to find a fixed point for the mapping

Ps —>ﬁs~

Let us find a different form of the equation (5.27) to demonstrate
the dependence of pg of the left-hand side. We have

N N
E ' E E svps
=1

=1

Note that

il = I%l - (klaps)
(a's’ksvv (asaks’ ) Vk(ai,ké,s),ps) —g(k‘é,ps).

Hence,

N
Z( as’ki’ (as’ksv ) (asvksv ) )

=1
N
s,ps) ZE (KL, Ps)-

=1

Bibliographical notes For an account of the optimal control the-
ory, we refer the reader to [126]. An introduction to the optimal
control theory, targeting an undergraduate audience, can be found in
the notes [57], by L. C. Evans.

The connection between deterministic optimal control and the
theory of viscosity solutions of first-order Hamilton-Jacobi equations
can be found in [17], [66] and [69].



Part 11

Stochastic models






6

Second order MFG

6.1 Hamilton-Jacobi and Fokker-Plank
equations

Before we proceed to the study of second order mean-field games, we
put forward some preliminary material. In this section, we generalize
several notions from the setting of deterministic optimal control to
the stochastic setting. We start by addressing the Hamilton-Jacobi
equation.

6.1.1 Hamilton-Jacobi equation

Consider a single agent whose state is determined by a point z € R¢.
This agent can change its state by applying a control v € R%. How-
ever, the agents are subject to independent random forces that are
modeled by a white noise. To make matters precise, fix T' > 0 and

a filtered probability space, P = (Q, {Fitocier s P), supporting a
d—dimensional Brownian motion W;. We also refer to P as a stochas-

tic basis. Let ¢ > 0. In this simplified model, the trajectory of the
agent is given by the stochastic differential equation (SDE)

(6.1)

Xtg = X,

V&:Wﬁ+MM7

7
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where v is a progressively measurable control with respect to the
filtration F;, or simply JF;-progressively measurable. That is, for
each 0 < s < ¢, the map (s,w) — v(s,w) is measurable with respect
to B([to, t]) x F.

Consider a Lagrangian L : R xR xR — R. By selecting the con-
trol v in a progressively measurable way, the agent seeks to maximize
a functional cost given by

T
J(x,v;t) =FE* / L(xs,vs;m)ds + VU (xp) |, (6.2)
t

where m represents a quantity to be made precise later. In (6.2), E*
denotes the expectation operator, given that x; = x. Furthermore,
U : R? — R is the terminal cost of the system.

The Legendre transform of L is

H(z,psm) = sup (p- v+ L, v;m)).. (63
vERE

We are interested in the value function of this problem, u, which is
determined by
u(xz,t) = sup J(x,v;t).
v

The function u : R? x [tg,T] — R is called the value function
associated with the (stochastic) optimal control problem (6.1)-(6.2).
It is well known that if the value function u is regular enough (i.e.,
twice differentiable with respect to x and differentiable with respect
to t), it is a solution of

TrooD?u(x,t
ui(z,t) + H(x, Du(z,t);m) + w =0, (6.4)

equipped with the terminal condition
u(z,T) = U(x). (6.5)

In fact, the regularity requirement can be substantially relaxed: it
is known that a viscosity solution of (6.4)-(6.5) is indeed the value
function of the control problem described by (6.1)-(6.2). See [66].
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In addition, the optimal control v* is given in feedback form by
v* = H,(x, Du(z,t);m).

The previous discussion can be made rigorous by means of a Ver-
ification Theorem. Before we proceed, we define the infinitesimal
generator and state the Dynikin’s formula.

Definition 6.1.1 (Infinitesimal generator). Let X; be a Markov pro-
cess, adapted to a fixed stochastic basis. The infinitesimal generator
of the stochastic process Xy is the operator A, defined by

Ex(to)=vo (£(X,, 1)) — f(zo,to)

Af(xo,t0) = Pftr(} — . (6.6)

The set of functions f, for which the limit in (6.6) exists and is finite
for all z, is called the domain of A and is denoted by D(A).

Example 6.1.1 (Diffusion process). Consider the following SDE:
dxs = h(xs,Vs,8)ds + o(Xs, Vs, 8)dWy, (6.7)

where h and o are given functions satisfying some growth and reg-
ularity conditions. Assume that v is a Markovian control. Then,
(6.7) is called a Markov diffusion. In this case, AV is given by

TroloD?f(x,t)
—

Before we state and prove a Verification Theorem, we present the
Dynkin’s formula.

AV f(z,t) = %f(a:,t) +h folz,t)+

Proposition 6.1.1 (Dynkin’s formula). Let xs be a Markov diffusion
with infinitesimal generator A. Assume that xy, = x. If f € D(A),
then,

E@0) (f(z4,1)) — fla,ty) = E&10) (/t Af(xs,s)d8)7
to
for every t > 1.

For a proof of Proposition 6.1.1, we refer the reader to [66]. Now,
we proceed to the Verification Theorem.
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Theorem 6.1.1 (Verification Theorem). Let w be a solution of (6.4)
with the terminal condition (6.5). Assume that w is differentiable
with respect to the time variable and twice differentiable with respect
to the space variable. Then, w > w. In addition, if the there exists
v* such that

v* € argmax [AYw(x}, s) + L(x;,vs;m)],
we have w = u.

Proof. By applying the Dynkin’s formula to w, we obtain

T
E@D (w(zp,T)) — w(z,t) = E®Y (/ A”x(xs,s)ds> .

Therefore:
T T 2
T D
() = B ( / i+ Dot T T>>
t
(6.8)
T T 2
Tr D
< E@ </ wy + H + %ﬂvw _ Lds+u(xT,T)> ,
t

where the inequality follows from the definition of H, in (6.3). Be-
cause w solves (6.4), (6.8) implies w > w.
Moreover, if there exists

v* € argmax [AYw(x%, s) + L(xk, vs;m)],

the inequality in (6.8) becomes an equality, that yields w = u. O

6.1.2 Fokker-Planck equation

In this section, we examine the Fokker-Planck equation. Consider a
population of agents whose state is z € R?. Assume further that the
state of each agent in the population is governed by the stochastic
differential equation in (6.1). Under the assumption of uncorrelated
noise, the evolution of the population’s density is determined by a
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Fokker-Planck equation. To discuss the derivation of this equation,
we depend once more on the notion of infinitesimal generator of a
(Markov) process.

Let A be the generator of a Markov process x;. The formal adjoint
of A, denoted by A*, acts on functions in a suitable regularity class
and is determined by the identity

d(x)Af(x)dx = f(z)A*p(x)dx,
Rd Rd

for every ¢ € C°(RY).

Example 6.1.2 (Markov diffusions). The infinitesimal generator of
a Markov diffusion is given in Example 6.1.1. It is:

TroToD2f

AN, 1) = e F G t) b Fular )+ 20

ot
Therefore, A* is given by

(a%0)ism), .
(AY)" [m] = —%m —div(hm) + ( 2 )xm] .

A fundamental result (see, for example, [13]) states that the evo-
lution of the population’s density, given an initial configuration my,
is described by the equation:

A*[m|(z,t) = 0,
{m(x>t0) = mo(x). (6.9)

Example 6.1.2 builds upon (6.9) to yield the Fokker-Planck equa-
tion
((O’To')i ; m(z, t))zm

me(z,t) + div(hm(z, t)) = : 5

(6.10)

6.2 Second-order mean-field games

Here, we combine several elements from Section 6.1 to derive a model
second-order mean-field game system.
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Consider a large population of agents whose state x;, € R? is gov-
erned by (6.1). Assume further that each agent in this population
faces the same optimization problem, given by (6.2). The Verifica-
tion Theorem 6.1.1 shows that the solution of the Hamilton-Jacobi
equation (6.4) is the value function. Moreover, the optimal control
v* is given in feedback form by

vy = Hp(x,Du(x,t);m).

On the other hand, the agents’ population evolves according to
(6.10). By setting h = v, we obtain

((UTU)M m(x, t))
2

T

me(x,t) + div(vm(z,t)) =

Under the assumption of rationality of the agents, the population is
driven by the optimal control v*; hence, it evolves according to

T

((O’ U)m, m(x,t))rizj
5 .

Therefore, the MFG system associated with (6.1)-(6.2) is:

my(z,t) + div(Hp(z, Du;m)m(z,t)) =

us + H(x, Du;m) + %TTO‘TUDzu =0, (z,t) € R? x [to,T)

((aTa)i.ij -

my + div(H,(z, Duym)m) = —————4 (z,t) € R? x (to, T,

equipped with the initial-terminal conditions

{u(x,T) = ur(x),
m(xz,ty) = mo(x).
6.3 The non-linear adjoint method

Consider a (non-linear) differential operator G : ¥ — Y and the
corresponding homogeneous equation

Glu)(z) = 0. (6.11)
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It is possible to associate with (6.11) a linear equation that en-
codes important information about the solutions of (6.11). We start
by considering then the linearized operator G of G, determined by

16(f +h) = G(f) = GUH)hlly

1hlly —0 1Ally

and take its formal adjoint, in the L? sense:

[o@ el = [ o) 6@,

The equation
G*[m](z) = 0

is called the adjoint equation to (6.11), and m is called the adjoint
variable. In what follows, we consider specific operators G and pro-
duce a few elementary results that illustrate the adjoint methods.
Set
Glu)(z,t) = us + H(x, Du) + Au,

where H = H(z,p); i.e., G is the operator associated with the Hamilton-
Jacobi equation (6.4). The adjoint equation is

my + div(H,(xz, Duym) = Am. (6.12)

Observe that the adjoint equation has maximum principle and pre-
serves 1mass.

In the sequel, we equip (6.12) with appropriate initial conditions.
This choice is arbitrary and motivated by the amount of information
we can extract. We start by fixing an initial time 7 € [tp,T) and a
point zg in RY. Then, set

m(z,7) = (), (6.13)

where d,, () is the Dirac delta centered at z. The aforementioned
choice leads to the next lemma.

Lemma 6.3.1 (Representation formula for u). Let u be a solution
of (6.4)-(6.5). Assume that m solves the adjoint equation (6.12) with
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ingtial condition (6.13). Then

u(x,t) / / (x, Du) — H,(x, Du) - Du) mdx
Rd

+ [ wr@m(a, e

Proof. Multiply (6.4) by —m, (6.12) by u, sum them and integrate
by parts to obtain

T
g/ umdx = / / (H(x, Du) — Hy(x, Du) - Du) mdz.
dt R4 T Rd

By integrating with respect to t, we get:

u(zxo, T / / (x, Du) — Hy(x, Du) - Du) mdx
Rd

+ [ ur@me. 7).

Since zy and 7 are chosen arbitrary, the former computation finishes
the proof. ]

Similar ideas yield a representation formula for the directional
derivatives of the value function wu.

Lemma 6.3.2 (Representation formula for u¢). Let u be a solution
of (6.4)-(6.5). Assume that m solves the adjoint equation (6.12) with
initial condition (6.13). Fiz a direction & in R?. Then

T
ue(z,t) = / y He¢(z, Du)dzdt + /Rd(uT)g(ac)m(x,T)dx

Proof. Differentiate (6.4) in the ¢ direction and multiply it by m.
Then, multiply (6.12) by ue, sum them and integrate by parts to get:

d

—/ ue(z, tym(z, t)de = H¢(x, Du)ym(x,t)dz.

dt R4 Rd

Integrating the former equality with respect to ¢ and noticing that
zo and t are arbitrary, we obtain the result. O
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Lemmas 6.3.1 and 6.3.2 give information about the values of u
and u¢ in a given point of the domain. These are determined by two
quantities; the contribution of the energy H and an average of the
terminal condition that depends, through m(z,T), on the points of
interest.

Next, we show that, under general assumptions on H, we can get
uniform upper bounds for the solutions of (6.4).

Corollary 6.3.1 (Upper bounds for u). Let u be a solution of (6.4)-
(6.5). Assume that m solves the adjoint equation (6.12) with initial
condition (6.13). Assume further that there exists C > 0 so that

H-H, p<—-C-CH. (6.14)
Hence,

w(w,t) < flurll poo raxt, 1) -
for every (x,t) € RY x [to, T].

Proof. Tt follows from Lemma 6.3.1, by using (6.14) and taking the
supremum in the right-hand side of the representation formula. [

We conclude this section with a corollary about the Lipschitz
regularity of the value function u. To simplify the presentation, we
assume that H, is uniformly bounded, i.e., there exists a constant
C' > 0 such that

|Ha(z,p)| <C.

Corollary 6.3.2 (Lipschitz regularity for w). Let u be a solution of
(6.4)-(6.5). Assume that m solves the adjoint equation (6.12) with
ingtial condition (6.13). Assume further that there exists C > 0 so
that

|H,(x,p)| <C. (6.15)

Hence,
Du € L®(R? x [ty, T)).

Proof. Lemma 6.3.2 yields:
T
ue(z,t) :/ Hx(x,Du)dacdt—i—/ (ur)e(z)m(z, T)dx;
T R4 R4

take absolute values on both sides of the previous equality and use
(6.15) to conclude the proof. O
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6.3.1 The adjoint structure of the MFG systems

A large collection of mean-field games enjoy an adjoint structure.
That is, the Fokker-Planck equation is the adjoint of the linearized
Hamilton-Jacobi equation. The system (6.2) is an important example
where this holds. This fact has numerous consequences concerning
the regularity of the solutions. However, the models in Chapter 4 and
in the next chapter do not have this adjoint structure. In this par-
ticular case, however, by assuming a death rate for the population to
be equal to the discount rate, the adjoint structure can be recovered.

The adjoint structure can also be regarded as a reflexion on the
model of the rational expectations hypothesis as it means that the
evolution of the distribution of the players is determined by the op-
timal feedback of the control problem each player faces.

Bibliographical notes Second-order mean-field games first ap-
peared in the works of J.-M. Lasry and P.-L. Lions [119, 120]. Sub-
stantial material concerning these models can be found in the video-
lectures by P.-L. Lions, [124, 125]. The notes by P. Cardaliaguet, [42]
contain several results, explained in detail. For instance, the proof of
existence of solutions based on Schauder’s fixed point Theorem.

Smooth solutions for time-dependent, second-order MFG are stud-
ied in [45], for purely quadratic Hamiltonians. See also [46]. The
quadratic case can be studied through a generalized Hopf-Cole trans-
formation. However, general Hamiltonians require distinct techniques
and are considered in [82, 81]. Systems with logarithmic nonlineari-
ties are investigated in [78]. Additional results on regularity of solu-
tions are reported in [79, 80]. The stationary case is first investigated
in [118, 120], where weak solutions are discussed. Classical solu-
tions for stationary second-order mean-field games are established in
[77] and [85]. Recent developments are reported in [140]. Related
problems are considered in [83] and [71]. The regularity theory for
multi-population MFG is developed in [54].

For the adjoint method, we refer the reader to the original paper
by L. C. Evans [59] as well as [151]. Further applications can be found
in [37], [61], [38], [39], [36]. For applications of the adjoint methods
to the MFG theory, see, for instance, [85], [77], [81] and [78].



7

Economic growth and
MFG - stochastic
setting

In the previous part of this book, we considered models where the
states of the agents are deterministic. More realistic models of eco-
nomic growth must include stochastic effects. These can be indepen-
dent white noises, affecting each of the individual agents, or systemic
effects. Here, we address the case of independent noise and revisit
the models introduced in Chapter 4.

To make presentation simpler, we fix a filtered probability space
(Q, {Fs}s>t,, P) throughout this chapter. We assume that all random
quantities are adapted to {F,}s>¢,. In addition, when a particular
control process is said to be progressively measurable, we mean that
it is progressively measurable with respect to {F}s>¢,-

7.1 A stochastic growth model with het-
erogeneous agents

We begin by revisiting the growth problem introduced in Section 4.1.
We recall this model addresses the wealth and capital accumulation

87
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problems with a capital-dependent production. Here, the microeco-
nomic states, macroeconomic variables, and the constitutive relations
of the economy remain unchanged. The difference, in this section, is
that each agent is affected by a white noise that is independent from
the ones of the other agents.

Microeconomic agents At each instant ¢, a microeconomic agent
is characterized by her level of consumer goods, a;, and stock of
capital, k;.

Microeconomic actions (controls) We assume that each of the
agents, at every instant ¢, controls her consumption and investment
levels, ¢; and 4, respectively; these controls are progressively mea-
surable processes.

Microeconomic dynamics In the present model, the evolution of
the state variables of a typical agent is governed by two stochastic
differential equations. The stock of consumer goods and the stock of
capital are driven by

day = (—c¢; — peie + F(ke,pe))dt + 0,dBY, (7.1)

and
dky = (g(ke, pt) + iy) dt + opdBF, (7.2)

where B® and B* are adapted Brownian motions. We assume that
distinct agents are affected by independent Brownian motions.

Macroeconomic variables The only macroeconomic variable of
the model is the price level, p;. This is a deterministic quantity in
the model.

Constitutive relations The economy is provided with two consti-
tutive relations, as discussed in Section 4.1. The first one is given by
the production function, F(k,p). The second one is determined by
the depreciation function, g = g(k, p).
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Microeconomic preferences As before, agents in the economy
face choices about their consumption and investment levels, and have
preferences over their stocks of consumer goods and capital, and the
price level of the economy. We assume that those preferences are rep-
resented by an instantaneous utility function u = w(cy, it, at, ki, pt)-
In this case, agents seek to maximize the expectation of the intertem-
poral utility functional

oo
V(an’t) = SupE(a’k’t)/ e_a(s_t)u(csyimamk57ps)d57 (73)

[N t

where E(®F:) is the conditional expectation operator on a; = a, ki =
k, the parameter o > 0 is a discount rate, and we maximize with
respect to all bounded progressively measurable controls (¢, i¢).

Optimal control problem FEach agent in the economy has an
optimal control problem. The function V(a, k,t), defined in (7.3), is
called the value function.

If V has enough regularity, i.e., it is of class C? in the space variable
and of class C! in the time variable, it solves the following Hamilton-
Jacobi equation:

2

2
Vi—aV + H(a,k,p,Va, Vi) + %AGV + %Akv =0, (7.4)

where the Hamiltonian H is defined by:

H(a, k,p,Va, Vi) = sup ((—c—pi+ F)Va + (9 + Vi + u).  (7.5)

c,i

Moreover, the optimal controls ¢ and ¢} can be determined in feed-
back form ¢ = ¢*(ae, ki, t), iy = i*(a, k,t) from the equations

H, (a,k,p, Vala, k. t), Vi(a, k,t))
= —c*(a,k,t) — pi*(a,k,t) + F(k,p),
H,, (a,k,pi, Vala, k,t), Vi(a, k,t) = g(k,pt) + i*(a, k, 1),
(7.6)
where H = H(a, k,p, qa, qx) is given by (7.5).
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Evolution of the agents’ population As in the first-order case,
we proceed by investigating the evolution of the agents’ distribution
in the space-state. In the stochastic setting, the agents’ density is
governed by a Fokker-Planck equation.

We assume that in (7.1)-(7.2) the controls are Markovian. This
is the case for the optimal controls (cf,i;). In what follows, we
present the infinitesimal generator associated with the stochastic pro-
cess (7.1)-(7.2). The infinitesimal generator is a linear operator acting
on regular enough functions. In some cases, it is important to empha-
size the dependence of the infinitesimal generator A on the controls;
when this is the case, we write A%,

To avoid unnecessary complications regarding the domain of A,
we define it on the space of smooth functions with compact support.
Let f € C° and assume that ¢; and 4; are Markovian controls, that
is,

Cy — c(at,kt),
and
Z't = i(at,kt).
The infinitesimal generator A% of the stochastic process (7.1)-(7.2)
is:
A% f(a, k) = (e —pi+ F) 2 (a,k) + (9 +1)
2

2
+ %Aaf(av k) + %Akf(av k)

of
%(aﬂ k)

The Fokker-Planck equation describing the evolution of the den-
sity p is given by

pe(a, k,t) — (Act’“)*p(mk,t) =0,

where A* is the formal adjoint of A in the L? sense; i.e.,

/]R2 (A*p(a, k,t)) ¢(a, k,t)dadk = / pla, k,t) (Ad(a, k,t)) dadk,

R2
for every ¢ € C°(IR?). Therefore,

, . o? o2
pet((me=pit F)p), + (g +i) p)y = 5 Bap + 7’%1@@ (7.7)
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Meanwhile, under the assumption of rationality, the agents act
optimally, choosing the consumption and investment levels given by
¢; and i}, respectively. Therefore, (7.7) becomes

o2

2
p o
pt + (Hg,p), + (Hg.p)y, = ?Aap + %Akﬂ (7.8)

Equilibrium conditions The model is equipped with an equilib-
rium condition that ensures a balance between aggregate investment
and the production of capital goods. This condition couples the op-
timization problem, (7.4), with the transport of the agents’ density,
(7.8).

The equilibrium condition is:

/i*(a,k,t)dp(mk:,t) = /E(k:,p)dp(a,k:,t), (7.9)

for every t > 0, where i*(a, k,t) is determined by (7.6).

As in the deterministic case, (7.9) determines the price level of the
economy, p;. Finally, we notice that (7.9) is also a market-clearing
condition for the economy.

Observe here that (7.9) is consistent with the assumption that p;
is deterministic, for it does not depend on any random quantities.

A mean field game model The coupling of (7.4) and (7.8) leads
to the system:

{Vt —aV + H(a,k,p, Ve, Vi) + LAV + B ALV =0,
o2 2
pt + (anp)a + (qup)k = TaAaP + TkAk.p,

together with the equilibrium condition (7.9), where p(x,to) = po(x)
is a given initial condition for the agents’ distribution.

7.2 A stochastic growth model with a
macroeconomic agent
Here, we introduce a macroeconomic agent into the previous setup,

namely, a central bank. This agent controls the interest rate of the
economy, the single macroeconomic variable of the model.
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Microeconomic agents Microeconomic agents in the economy are
characterized by their state variables: consumer goods a; and capital
ky.

Macroeconomic agent There is one macroeconomic agent in the
economy: the central bank. The state of the macroeconomic agent is
determined by the amount A of its assets.

Macroeconomic variables As in the preceding model, the price
level p; is the single macroeconomic variable of the economy. Here, in
addition to p;, the economy has an interest rate, ;. While the price
level of the economy is determined by an equilibrium condition, the
interest rate is set by the central bank.

Constitutive relations The economy has two constitutive rela-
tions, namely, the production and depreciation functions, F' and g,
respectively. These are prescribed as in Section 7.1.

Microeconomic actions (controls) Microeconomic agents in the
economy control two quantities of the model, the consumption ¢; and
the investment level ;.

Microeconomics dynamics In this model, the stock of consumer
goods is governed by the stochastic differential equation:

da; = (rear — ¢¢ — peiy + F(ke,pe)) dt + 0,dB7,

where By is a scalar Brownian motion. The interest rate r; impacts
the accumulation of consumer goods.
The capital accumulation in the economy is governed by

dky = (g(ks,pt) + i) dt + oxdBr,

where BF is a one-dimensional Brownian motion, also adapted to a
suitable stochastic basis.

As in Section 7.1, we assume independence of B{ and Bf among
the population, i.e., there is no common noise in the model.
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Macroeconomics dynamics The state of the central bank is de-
termined by its total assets A; and the distribution of agents p(-, t).
The evolution of p is determined by (7.2). As suggested by the dy-
namics of consumer goods accumulation, the amount of consumer
goods a; that is not consumed neither turned into investment, earns
the interest rate, r;. Therefore, the assets of the central bank, A,
evolve according to the following deterministic dynamics:

A = —rt/ap(a, k,t)dadk. (7.10)

Macroeconomics actions (controls) The central bank controls
the interest rate of the economy, r;.

Microeconomic preferences In the presence of a central bank,
we suppose the instantaneous utility of the microeconomic agents to
depend also on the interest rate ry. le., u = u(cy, iy, ar, ki, pr, 7).
The intertemporal counterpart of u, denoted by V| is:

o0
V(a,k,t) = sup/ e_“(s_t)u(cs,is,as,ks,ps,rs)ds.

c,i Jt

Equilibrium conditions We assume the equilibrium condition of
the economy to be as in Section 7.1. Notice that it still represents a
market-clearing condition.

Optimal control problem The optimal control problem faced by
the microeconomic agents, in the present setting, is characterized by
the Hamilton-Jacobi equation

2 2
Vi, —aV + H(a, k,p, 7, Va, Vi) + %Aav n %Akv -0,
where the Hamiltonian H is:
H(CL, k7pa T, Vavvk) = sup ((’I"CL —C _pl + F)Va + (g + Z)Vk' + U) .

c,t

(7.11)
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The optimal controls ¢ = c¢*(ay, ki, t) and i = i*(ay, k¢, t), asso-
ciated with this problem, are given in feedback form by

H‘Za (a,kt,pt,rt,Va(a, kvt)a Vk(a/a k7t) = ra — C* _ptZ* + F(kapt)a
HQk(a’kaptartaVa(avkat)vvk:(aakvt)) = g(k7pt) +7’*7
(7.12)
where H is defined as in (7.11).

Transport of the agents’ population The state of the system
evolves in this model according to two distinct equations. First,
there is the Fokker-Planck equation, that describes the microeco-
nomic agents’ evolution. Further, the state of the central bank is
characterized by (7.10).

The Fokker-Planck equation governing the evolution of the mi-
croeconomic agents’ density is:

* <% - Ug 0'2
pt + ((rea — ¢ —pi* + F)p), + (g + i )p)k=7Aap+7’“Akp-

(7.13)
As before, the assumption of rationality plays a major role here. It

implies that the actual values of ¢;, 7y and r; are the optimal ones
given in (7.12). Hence, (7.13) becomes

2

2
g, g
P+ (anp)a + (H(Jkp)k = ?aAap + %Akﬂ-

A mean-field model of the economy Here, we formulate the
growth model with a macroeconomic agent as a mean-field game sys-
tem:

{v; —aV + H(a, k,pe, 7o, Va, Vi) + B ALV + LAY =0,
o2 o?
Pt + (anp)a + (qup)k = TaAap + %Akp’

where p; is chosen so that (7.9) holds.

Macroeconomic welfare The macroeconomic agent has prefer-
ences over two quantities of the model. Typically, the central bank
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aims at controlling the price levels p; while sustaining or increas-
ing the wealth levels W; in the economy. For example, the central
bank may adopt an inflation target regime and operates through the
interest rate to enforce the price to be within a particular range.
Conversely, the priority of the macroeconomic agent may regard eco-
nomic growth. The interest rate regulation seeks to ensure adequate
levels of capital accumulation.

The objectives of the central bank are encoded in the welfare
function of the economy, U = U (A, Wy, pt). As before, we formulate
the optimization problem faced by the central bank in terms of the
intertemporal counterpart of U:

sup/ 6_’8(3_t)U(AS,W5,pS)dS. (7.14)

T t

Therefore, the central bank faces an infinite dimensional control prob-
lem, with payoff (7.14) and dynamics determined by (7.2), together
with the equilibrium condition (7.9) and (7.10).

In the case an optimal control r} exists, it is called a macroeco-
nomic policy.

Bibliographical notes Economic models with second order effects
were considered in [7] and [4]. The price formation models examined
in [120, 30, 29, 35, 34, 25] fall outside the scope of this chapter but
represent an important alternative approach. Stochastic MFG mod-
els also arise in power grid management, see for instance [15, 127].



Mathematical analysis
II - stochastic models

In this chapter, we develop methods to study the stochastic models
detailed in Chapter 7. We start with a Verification Theorem and
proceed by investigating properties of concavity and monotonicity of
solutions.

It is worth noticing that some of the material presented in Chap-
ter 5 do not extend, at least in a straightforward manner, to the
stochastic setting. This is the case of the N-agent approximation.
Convergence of the N-agent approximation in the case of stationary
second-order MFG, with ergodic costs, has been investigated in [118],
[120] and [62]. See also [21].

For ease of presentation, this chapter focuses on the model of
Section 7.1. In addition, we consider the finite horizon case, with a
fixed terminal instant 7" > 0.

96
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8.1 Verification Theorem

Here, we study the connection between solutions of

Wy — aW + H(a, k,p, Wa, Wi) + 22 AW + ZEALW =0,
Wz, T) = ur(x).

and the value function

[ t

T
V(a,k,t) = sup E(®F) [/ e G yds + eo‘(Tt)uT(:rT)] .

The Hamiltonian H in (8.1) is given by

H(a, k,p, Wo, W) = sup (A(C’i)W + u) ,

where A(¢?) is the infinitesimal generator of the Markov process
(at,kt).

Theorem 8.1.1 (Verification Theorem). Let W be a classical solu-
tion of (8.1) and assume that w is strictly concave. Then, W is the
value function associated with the optimal control problem (7.1)-(7.2)
and (8.2).

Proof. We start by verifying that, if W is a classical solution of (8.1),
then
Wi(a, k,t) > V(a,k,t).

Assume that ¢ and i are Markovian control processes. Using Dynkin’s
formula (Proposition 6.1.1), we obtain

e_O‘(T_t)E(a’k’t)W(aT7 kT? T) — V[/v(a7 k‘, t) (83)

T
= ]E(a’k’t)/ et [AC’iVV(aS7 ks, s) — aW (as, ks, s)] ds,
t

where A is the infinitesimal generator of the Markov process (a¢, k).
Because W solves (8.1), we have that

AC’iW(aS,ks,t) — aW(as, ks,s) + u < 0.
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Therefore,

T
~Wl(a,k,t) < 7E<av’“’t>/ e ey, is, a5, ke ps)ds  (8.4)

t
— e *TORCEOW (ap, kp, T).

To complete the proof, we notice that, because v is strictly concave,
there exists a unique pair (¢, i} ), such that

AW (a,k,t) + ulcl, iy, ap, ke pe) = 0. (8.5)
By using (8.5) in (8.3), one gets equality in (8.4). This establishes
the Theorem. O

8.2 Monotonicity and convexity

Here, we investigate the monotonicity and concavity of the value
function associated with the model considered in Section 7.1. Two
reasons motivate our interest in those properties. First, they encode
basic principles of the consumer’s theory. Second, the instantaneous
utility function u is assumed to be strictly concave and monotone.
Therefore, it is important to understand whether or not its intertem-
poral counterpart inherits those properties. In the affirmative case,
this ensures that preferences that can be represented by a suitable
instantaneous utility function, can still be represented by an intertem-
poral functional.

We suppose throughout this section that the price, p:, is given,
deterministic and regular.

Monotonicity of the value function We begin with an auxiliary
lemma that states that the dynamics (7.1)-(7.2) is order preserving,
for each realization of the noise process.

Lemma 8.2.1. Let F(k,p) and g(k,p) be continuous functions, lo-
cally Lipschitz in k, with F non-decreasing in the variable k. Fiz two
initial conditions, (a',k') and (a?,k?), with a* < a? and k' < k2.
Denote by (a’, k') the solution of

daj = (—cx —pie + F(kj,pi))dt + 04dBf,
dkj = (g(ki,ps) + i) dt + odB,
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equipped with initial conditions

aj, = a,
ki = k.
Then, a} < a? and k} < k2, for all t > to.

Proof. We fix a realization of B¢ and BF. Thus, since g is locally
Lipschitz in k,

dki = (g(kf,pe) + it) dt + oxdBf

has a unique pathwise solution k* with probability 1. The difference
k} — k? solves

(k) —k7) = (9(ki,pe) — g(k;,pe)) dt.

Therefore, by an application of Gronwall’s Lemma, we obtain k;} < k?
for all t > t¢, since k' < k2. Now, because F is locally Lipschitz in
k, the SDE

daj = (—¢; — pyiy + F(ki,py))dt + 0,d By

also has a unique pathwise solution ai with probability 1. From the
non-decreasing property of F' in k, we infer that

F(ki,p) < F(kf,pr).
Consequently, for each path of By, we have
da; < da?.
This concludes the proof. O

In the sequel, we present the proof of the monotonicity of the
value function V.

Proposition 8.2.1 (Monotonicity of the value function). Let F'(k,p)
and g(k,p) be continuous functions, locally Lipschitz in k, with F'(k,p)
non-decreasing in k. Assume that the instantaneous utility function
u s non-decreasing in the wealth variables a and k. Then, the value
function V' is non-decreasing in a and k.
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Proof. We proceed by assuming the existence of maximizing trajec-
tories, avoiding a more cumbersome argument, based on e-optimality.
As before, fix two initial conditions: (a',k!) and (a2, k?), with a! <
a? and k! < k2. Denote by (¢?,i/) the optimal control associated with
the initial data (a?,k’). From the definition of the value function, it
follows that

T
V(alv klv t) = Ewl’kl’t) l/ eia(87t)u(ai7lv k;’la Cia Z;)d8‘| )
t
where (a%7, k7) is the trajectory associated with the initial condition
(a®, k), driven by the control (¢/,i7). Because the controls ¢! and it
are optimal for (a', k'), they are suboptimal for (a?, k?). Therefore,

T
V(a®, k% t) > E(@* .0 l/ e_a(s_t)u(ai’l,k?’l,c;,i;)dsl .
t

From Lemma 8.2.1, it follows that al! < a?! and k' < k21, for all
5 > tg. This, combined with the fact that u is non-decreasing, yields:

T
Via', k' t) = El@ *0 l/ eo‘(st)u(ai’l,k;’l,ci,ii)dsl
¢

< E(G.Q,kz,t)

T
/ e Gy (a2t k21 el ilyds| < V(a? K2, t).

t

O

The previous proposition ensures that the intertemporal utility
function of the agents inherits the monotonicity of the instantaneous
utility function. Next, we investigate the concavity of the value func-
tion.

Concavity of the value function The next proposition estab-
lishes the concavity of the value function, V.

Proposition 8.2.2 (Concavity of the value function). Let F(k,p)
and g(k,p) be concave in k, and assume that F(k,p) is a non-decreasing
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function, with respect to the variable k. Assume further that the in-
stantaneous utility function u is non-decreasing in the wealth variables
a and k and concave. Then, the value function V is concave in a and

k.

Proof. As before, we assume the existence of optimal trajectories
and consider two distinct initial conditions: (a', k') and (a2, k?). For
A€ (0,1), set

a} = (1 — Nal + a2,

B = (1= Ak 4+ A2,

Now, let (c%, i) be the optimal controls associated with the initial
conditions (a’, k%). Consider the convex combination

{

Next, denote by (as, ks) the trajectory associated with (c
equipped with initial conditions (a),k)). It is clear that
suboptimal.

w3

= (1 — Nel + A2,
= (1 — N)il + N2

@ >

3,i¢) and
(@s, ks) is

In addition, we have:

dky = (g(ke,pt) + i) dt + opdBy,
ko = (1 — Nk + \k2,

and, using the the concavity of g in k, we obtain

dik} < (g(k,pe) +4*) dt + opdBY,
k) = (1= Mk + k2.

Accordingly, by fixing a realization of the Brownian motion BF, we
have that k; > kt , for every t > tg.
Moreover,

da; = (—cA — pyip + F(/%t,pt)) dt + 0,dBY,
ao = (1 —XNa! + \a?.
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Furthermore, using the concavity and the monotonicity of F', along
with the fact that k; > k:t’\, for every t > ty, we conclude that

da} < (—c>‘ — pyip + F(Et,pt)) dt + 0,dB},
ay = (1 —N)a! + %

Therefore, a; > a;, for every t > ty. By combining this with the
assumptions of monotonicity and convexity of u, we get

S$17s)

_ T _
V(e B> t) > E@k [/ ey (e, i) ds,ks)dsl
¢

§71787

T
> E(ak’k&t) [/ efoz(sft)u(c)\ A ai‘,ki‘)ds]
¢
1 1 T
> (1—A)E@ F b / e Gy (et il al kDds
t

T
1 AR R0 l/ e_a(s_t)u(cg,ig,ag,k?)ds]
t

= (1= NV(a', k' t) + AV (a? k2 t).
Hence, the proof is complete. O

Propositions 8.2.1 and 8.2.2 have an important implication re-
garding the intertemporal representation of the preference structure.
These results ensure that the monotonicity and concavity of the in-
stantaneous utility function are preserved under the intertemporal
optimization problem of the agents.

8.3 A comparison result under regulated
prices

We end this chapter by comparing the deterministic growth model,
presented in Section 4.1, to its stochastic analog, introduced in Sec-
tion 7.1. We assume that the price is regulated and given by the
same deterministic price function pf, both in the deterministic and
the stochastic settings.
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Denote by V% the value function of the first-order MFG associated
with the deterministic model. In the same fashion, let V* denote the
value function of the second-order MF@G, associated with the stochas-
tic model. We show that, for the given price level p;, these functions
are comparable, due to the concavity property of V*.

Proposition 8.3.1 (Comparison). Let F(k,p) and g(k,p) be con-
cave in k, and assume that F(k,p) is a non-decreasing function, with
respect to the variable k. Let the price level of the economy, pf, be
given. Assume further that the instantaneous utility function, u, is
non-decreasing in the wealth variables a and k, and concave. Then,

Ve < ve,

Proof. We notice that V; and V; solve the following Hamilton-Jacobi
equations:

Vi(a,k,t) — aV¥a, k,t) + H(a, k,p;,VE, V) =0, (8.6)
and

Vi(ak,t) — aV*(a, k,t) + H(a, k,pi, V7, Vi) (8.7)
Tan s _ Tk Ay
= _EA“V . ?AkV
>0,

where the inequality in (8.7) is implied by the concavity of V* (c.f.
Proposition 8.2.2). Notice that, because of (8.7), V* is a subsolution
of (8.6). A straightforward application of the comparison principle
yields the desired result. O

When the price level of the economy is regulated, Proposition
8.3.1 states that, in the stochastic setting, an individual is at most
as good as in the deterministic case. In other words, it shows that,
for a given price level p;, the welfare of an economy subject to noise
is always below the welfare of a deterministic, more stable economic
system.
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Bibliographical notes The reader interested in the theory of second-
order viscosity solutions is referred to [66] and [55]. Additional math-
ematical tools for economically motivated MFG are addressed in [4]
and [7]. Mathematical methods for second-order MFG are discussed
in detail in the surveys [42], [87], and [21].



Mean-field games with
correlations

In the models presented in Chapter 7, we have assumed the indepen-
dence of the Brownian motions affecting different agents. A further
layer of complexity can be added, by allowing for correlated noise and
systemic shocks. In the sequel, we examine a few preliminary notions
of mean-field games in the presence of correlated noise. Then, we
revisit the growth model from Section 4.1 taking into account the
presence of systemic shocks.

For ease of presentation, we fix two distinct probability spaces
throughout this chapter. Let P = (€, {Fs}s>1,, P) be the stochas-
tic basis associated with the driving noise. In addition, fix P =
(Q,{Fs}ts>t,, P), the agents’ space. Each w € 2 represents an indi-
vidual agent.

105
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9.1 Mean-field games with correlated noise

9.1.1 General setup

As before, we consider a population of agents whose microscopic dy-
namics is governed by the stochastic differential equation:

dx, = vsd 2dBs;,
{x veds 4+ /2 9.1)

x(t) = x,

where vy is a ]:'S—progressively measurable control and B; is a d-
dimensional Brownian motion, adapted to the filtration {Fs}s>t,-

Fix ¢ > 1 and let X € L(2,R%) be a random variable that assigns
to each agent w € Q) its position at time ¢, X;(w). The probability
distribution associated with the players’ population is £(X), the law
of X,. It is defined by

E¢(X) = [ ¢dL(X),
Rd
for any ¢ € C.(R?).

Let b: R x L9(Q,RY) x [to, T] — R?, be a Lipschitz vector field.
We assume that b depends on the second coordinate only through the
law of the random variable. That is, if X,Y € L4(92,R%) have the
same law, we have b(z, X,t) = b(z,Y,t). Next, let w € Q denote an
arbitrary agent in the population. We suppose that at each instant
s > tg, the position of the agent w in the state space is given by the
random variable X(w), where X satisfies

{dXs(w) = b(X,(w), Xs, s)ds + v2dB,, 02)

where Bj is a d-dimensional Brownian motion adapted to {]}s}sZtoa
and Xo € L9(Q, R?) represents the initial states of the agents at time
to. The random variable X contains all relevant information on the
state of the agents.

Individuals in the population have preferences over their states,
their controls, and the distributions of the remaining agents. As
before, these are represented by a utility u : RY x R% x L4(2, R?) — R.
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We assume u(v, z, X) depends on the third coordinate only through
the law of the random variable X. A typical agent in the population
seeks to maximize

T
Ja(vyz, X5t) = I@’/ e_“(s_t)u(vS,XS,Xs)ds (9.3)
t

+ur(x(T), X(T)),

where ur is a terminal cost, & > 0 is a discount rate and 7" > 0
is a fixed terminal instant. The value function associated with the
optimal control problem comprising of (9.1), (9.2) and (9.3) is

V(z,X,t) = sup Jo(v,z, X;t).
v

We aim at characterizing V' as the solution of a partial differential
equation. This is examined in the next section.

9.1.2 The master equation

We begin our discussion by introducing adequate notation for certain

directional derivatives of functions of random variables. The notation

b-DxV (z, X,t) denotes the directional derivative of V' in the direction
b

d

b-DxVi(x,X,t) = ¥

—V(z, X + 0b(x, X, 1),1)
€ §=0
Fix a standard unit vector e’ in R%. The directional first derivative
operator in the direction e’, denoted §;, is defined by
V(z,X +ee',t) — V(x, X, t
5.V (2, X, 1) = lim Y (BN e l) = Vi@ Xo1)

e—0 €

The directional second derivative operator in the direction ef, §2, is
given by
d? -
82V (x, X, t) = PV(JC,X—&—eel,t)
€

We consider the elliptic operator

e=0

d d
LV (2, X, t) = > GV (2, X, ) +2) 6D, V(z, X,t)  (9.4)
=1 =1

+ AV (x, X, t).
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Next, we define the Hamiltonian H : R? x L9(2,R%) x R? — R
by
H(z,X,p) =sup(p-v + u(v,z, X)).

Arguing as in Section 6.1, we see that, if b is such that (9.2)
admits a unique solution X and V is a two-times Frechet differentiable
function, solving the Hamilton-Jacobi equation

V, —aV + DxV b+ H(z,X,D,V) + &V = 0, (9.5)

where £ is the linear operator in (9.4), then V is the value function.
Furthermore, the optimal vector field b* is given by

b*(z,X,s) = D,H(x,X,D,V(z,X,s)). (9.6)

Under the assumption of rationality, each agent in the population
chooses the optimal vector field in (9.6). Therefore, by combining
(9.5) with (9.6), we are lead to the mean-field equation in master
form

Vi(x,X,t) — aV(x,X,1t) (9.7)
+DxV(x,X,t) - D,H(X(w), X, D;V(X(w), X, 1))
+ H(X(w),X,D,V(x,X,t)) + £V (x,X,1)
= O7
together with the terminal condition

V(z, X, T) = up(z, X).

This is called the master equation. Notice that (9.7) encodes the
information regarding the optimization problem faced by the agents
and the evolution of the population’s states.

9.2 A growth model with systemic shocks

Here, we put forward a growth model in the presence of systemic
shocks.
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Microeconomic agents A typical individual in the economy is
characterized by her amounts a; of consumer goods and k; of capital
goods.

At time s € [tg, T, the position of the agent w in the state space
is given by the random variable X, (w) = (4s(w), Ks(w)).

Macroeconomic variables The only macroeconomic variable in
the model is the (relative) price, p;. This quantity is set in equi-
librium. Here, p; is no longer assumed to be deterministic, rather
we suppose it is given in feedback form as a function of the state
X € L1(Q,R?) of the players, that is p; = p(X;), for some function
p: LY(Q,RY) — R.

Constitutive relations There is a production function F'(k,p),
that describes the technology of the economy. Moreover, a depreci-
ation function g(k,p) governs the depreciation of the capital stock,
ky.

Microeconomic actions (controls) In this model, the microeco-
nomic agents control their levels of consumption and investment: c;
and 4, respectively.

Microeconomic dynamics The state of the agents in the model
is governed by two stochastic differential equations:

day = —c¢¢ —peiy + F(ke,pe) +0%dBy,

and
dkt = g(ktvpt) + it +O.kdBtka

where B and Bf are adapted Brownian motions.

In contrast with Chapter 7, here, we drop the assumption of inde-
pendence of the Brownian motions impacting distinct agents. There-
fore, the model is affected by systemic shocks, and the derivation of
the associated MFG system, as in Chapter 7, is no longer valid.

We also prescribe the evolution of the random variable Xj:

dX, = b(as, ks, X, s)ds + /2dBs,
X, = X,
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where B, is an adapted Brownian motion and b : R? x L7(2, R?) x
[to, T] — R? is a Lipschitz vector field. As before, we denote by £(X)
the law of the random variable X.

Microeconomic preferences Agents have preferences represented
by an instantaneous utility function u = u(cy, ¢, at, ke, X¢, pr). The
function v depends on the random variable X through its law. This
dependence represents the preferences of the agents over the state of
the population.

Its intertemporal counterpart is given by

V(at7 kt7 Xt7 t) = sup ]E((L’k’t) / e_a(s_t)u(csa isa as, ksa Xs,ps)dS.

Ct,it t

Equilibrium condition The equilibrium condition of this model
is

/ idC(Xe)(a, k. t) = py / =dL(Xy)(a, b, t). (9.8)

Master equation In contrast with Chapters 4 and 7, this model
is characterized by the associated master equation. This is derived
in the sequel.

First, notice that V(a, k, X, t) solves

Vila, k, X, t) — aV(a, k, X, t)+ DxV(a,k, X,t) - b (9.9)
+ H(a/7 k7X7 Vaa anp(Xa t))
+ A(a,k)V(a, k,X,t)

2
+ Y 67V (ak, X, t) + 201 D4V (a, k, X, 1)
=1

+ 252DkV(a, k, X, t) =0,
where the Hamiltonian H is determined by:

H(a,k, X, Vo, Visp) = max [ACV 4u],

Ct,t

where A(¢t:%) is the infinitesimal generator of the controlled Markov
process (a¢, ki), given the controls (¢, ).
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Because agents are rational, they act optimally, i.e., the vector
field driving the evolution of the random variable X; is

b(XS(w)7 X, 5) = D;DH(XS(W)a X, Va, Vk,p(Xs)).
Hence, (9.9) becomes

V, —aV + DxV - DyH(Xy(w), Xy, Vi, Vie, p(Xy)) (9.10)
+ H((l, kaXtv Vaa Vkap(Xt))

2
= AV + > 82V + 26D,V + 26,D,. V.
i=1
Finally, the equilibrium condition (9.8) determines p(X) implicitly as

f (Hyy (a, by Xy, Va, Vi, (X)) — g(k, p(X4))) dL(Xy) (a, K, 2)
TZdL(X,)(a, k. 1) ’
(9.11)

p(Xt) =

where (Vo, Vi) = (Va(a, k, X, t), Vi(a, k, X, t)).

Equations (9.10) and (9.11) contain all the relevant information
on the model. First, it solves the optimization problem faced by the
agents. Furthermore, it accounts for the evolution of this population,
under the assumption of rationality, and takes into consideration the
equilibrium condition (9.8).

Bibliographical notes For the master equation, we refer the reader
to the video lectures by P.-L. Lions [124]. The paper by A. Bensous-
san, J. Frehse and P. Yam [22] focuses on the master equation in
the context of mean-field games and mean-field control. See also
the monograph by the same authors [21]. A recent survey paper on
the subject is [87]. Existence results can be found in [91, 68]. Re-
cent developments regarding the existence of classical solutions for
the master equation have been reported in [53]. In that paper, the
authors consider the master equation without common noise.

For the probabilistic approach to mean-field game systems, we
refer the reader to the work of R. Carmona and F. Delarue [49, 48]
and R. Carmona, F. Delarue and D. Lacker [51] and R. Carmona and
D. Lacker [52]. Finally, a recent approach to systemic risk is [143].
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