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Abstract 
Both mathematical modelling and simulation methods in general have contributed greatly 
to understanding, insight and forecasting in many fields including macroeconomics. 
Nevertheless, we must remain careful to distinguish model-land and model-land quantities 
from the real world. Decisions taken in the real world are more robust when informed by 
estimation of real-world quantities with transparent uncertainty quantification, than when 
based on “optimal” model-land quantities obtained from simulations of imperfect models 
optimized, perhaps optimal, in model-land. The authors present a short guide to some 
of the temptations and pitfalls of model-land, some directions towards the exit, and two 
ways to escape. Their aim is to improve decision support by providing relevant, adequate 
information regarding the real-world target of interest, or making it clear why today’s 
model models are not up to that task for the particular target of interest. 
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1 Introduction 

Computational simulations and associated graphical visualisations have become much more 
sophisticated in recent decades due to the availability of ever-greater computational resources.  
In part, the qualitative visual appeal of these simulations has led to an explosion of simulation-
based, often probabilistic forecasting in support of decision-making in everything from the 
UK’s GDP and unemployment to weather forecasting and American Football, to nuclear 
stewardship and the Earth’s future climate.  In each case, the outputs of these models are again 
used to inform real-world decision making, sometimes in public view, sometimes not. We argue 
that the utility and decision-relevance of model simulations must be judged based on 
consistency with the past, and where possible on out-of-sample predictive performance, and on 
expert judgement; never based solely on the plausibility of their underlying principles or on the 
visual “realism” of outputs.   

Model-land is a hypothetical world (Figure 1) in which mathematical simulations are 
evaluated against other mathematical simulations, mathematical models against other (or the 
same) mathematical model, everything is well-posed and models (and their imperfections) are 
known perfectly. It also promotes a seductive, fairy-tale state of mind in which optimising a 
simulation invariably reflects desirable pathways in the real world. Decision-support in model-
land implies taking the output of model simulations at face value (perhaps using some form of 
statistical processing to account for blatant inconsistencies), and then interpreting frequencies in 
model-land to represent probabilities in the real-world. Probabilities in model-land are what I.J. 
Good (1959) referred to as tautological probabilities (mathematically well defined by the 
statement of the problem itself). Elegant though these mathematical-models may be, something 
is lost in the move back to reality; very low probability events and model-inconceivable “Big 
Surprises” are much too frequent in applied meteorology, geology, and economics. We have 
found remarkably similar challenges to good model-based decision support in macroeconomics, 
energy demand, fluid dynamics, hurricane formation, life boat operations, nuclear stewardship, 
weather forecasting, climate calculators, and sustainable governance of reindeer hunting. 

One can justifiably aim to transform simulations in model-land into information regarding 
the real world, but only where such information exists to be found in the model-land 
simulations. Our aim is a decision-making process that remains acceptable to all involved 
regardless of the outcome; ideally a process retained without modification and used again under 
similar conditions in the future regardless of the outcome, unless a deeper understanding of the 
system has been obtained. This cannot be accomplished in model-land. Uncomfortable 
departures from model-land are required for (good) decision support. 

Our image of model land is intended to illustrate Whitehead’s (1925) “Fallacy of Misplaced 
Concreteness”. Whitehead (1925) reminds us that “it is of the utmost importance to be vigilant 
in critically revising your modes of abstraction”. Since obviously the “disadvantage of exclusive 
attention to a group of abstractions, however well-founded, is that, by the nature of the case, you 
have abstracted from the remainder of things”. Model-land encompasses the group of 
abstractions that our model is made of, the real-world includes the remainder of things. 

Big Surprises, for example, arise when something our simulation models cannot mimic turns 
out to have important implications for us. Big Surprises invalidate (not update) model-based  
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Figure 1: A map of Model-land. The black hole in the middle is a way out. 

 
probability forecasts: the conditions I in any conditional probability P(x|I) changes. In “weather-
like” tasks, where there are many opportunities to test the outcome of our model against a real 
observed outcome, we can see when/how our models become silly (though this does not 
eliminate every possibility of a Big Surprise). In “climate-like” tasks, where the forecasts are 
made truly out-of-sample, there is no such opportunity and we rely on judgements about the 
quality of the model given the degree to which it performs well under different conditions. 

In economics, forecasting the closing value of an exchange rate or of Brent Crude is a 
weather-like task: the same mathematical forecasting system can be used for hundreds or 
thousands of forecasts, and thus a large forecast-outcome archive can be obtained. Weather 
forecasts fall into this category; a “weather model” forecast system produces forecasts every 6 
hours for, say, 5 years. In climate-like tasks there may be only one forecast: will the explosion 
of a nuclear bomb ignite and burn off the Earth’s atmosphere (this calculation was actually 
made)? How will the euro respond if Greece leaves the Eurozone? The pound? Or the system 
may change so much before we again address the same question that the relevant models are 
very different, as in year-ahead GDP forecasting, or forecasting inflation, or the hottest (or 
wettest) day of the year 2099 in the Old Quad of Pembroke College, Oxford.  
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2 Simulations and Model-lands: the map is not the territory 

As the simulation of complex systems becomes routine in many areas of research (Petersen, 
2012), the distinction between simulated variables and their real-world counterparts can become 
unclear (Beven et al., 2012). As a trivial example, when writing about forecasts of household 
consumption, energy prices, or global average surface temperature, many authors will use the 
same name and the same phrasing to refer to effects seen in the simulation as those used for the 
real world. These authors probably are not actually confused about which is which; our point is 
that readers of conclusions would benefit from a clear distinction being made, especially where 
such results are presented as if they have relevance to real-world phenomena and decision-
making. 

Why are we concerned about this? It is not just a philosophical worry about semantics but 
real implications we have observed when the consumers of this material realise just how 
different the model-variables are from the real-world phenomena they face. Something seen on 
the map may not correspond to what is in the territory; worse, something not seen on the map 
may be encountered when we explore the territory. Within model-land, we cannot even 
enunciate the possibility of a “Big Surprise”, let alone think about the probability of such an 
event occurring. Yet the possibilities remain of economic surprises, previously-unseen weather 
events, energy price spikes, or worse-than-expected climate impacts, even where these are not 
simulated by today’s models. Such events, in fact, happen disturbingly often. Can we escape 
model-land by targeting exclusively the less comfortable, but better-informed and much more 
relevant real-world entities in decision-making? 

It is comfortable for researchers to remain in model-land as far as possible, since within 
model-land everything is well-defined, our statistical methods are all valid, and we can prove 
and utilise theorems (Judd and Smith, 2001). Exploring the furthest reaches of model-land in 
fact is a very productive career strategy, since it is limited only by the available computational 
resource. While pure mathematicians can, of course, thrive in model-land (see Box below), 
applied mathematicians have a harder row to hoe, inasmuch as, for large classes of problems, 
the pure mathematicians have proven that no solution to the problem will hold in the real world 
(Judd and Smith, 2004; Judd et al., 2008; see also, of course, the many relevant writings of 
Poincare and Smale on this situation.). 

For what we term “climate-like” tasks , the realms of sophisticated statistical processing 
which variously “identify the best model”, “calibrate the parameters of the model”, “form a 
probability distribution from the ensemble”, “calculate the size of the discrepancy” etc., are 
castles in the air built on a single assumption which is known to be incorrect: that the model is 
perfect. These mathematical “phantastic objects” (Tuckett and Taffler, 2008; Tuckett, 2011;  
Tuckett and Nikolic, 2017), are great works of logic but their outcomes are relevant only in 
model-land until a direct assertion is made that their underlying assumptions hold “well 
enough”; that they are shown to be adequate for purpose, not merely today’s best available 
model. Of course, many assumptions are false in principle but negligible in practice and it is 
reasonable to ask, as we now do, whether this may not be the case here. Until the outcome is 
known, the ultimate arbiter must be expert judgement, as a model is always blind to things it 
does not contain and thus may experience Big Surprises. 

http://www.economics-ejournal.org/


Economics: The Open-Access, Open-Assessment E-Journal 13 (2019–40) 

www.economics-ejournal.org 5 

 
 

While a model is of no help in accurately forecasting phenomena it cannot simulate, it can 
however be useful in detecting that something has gone badly wrong in model land. One can 
detect that the model-state is in a region where the model has never explored or there is no data, 
or the model can detect that its outputs are abnormal. In our real-time forecast systems the 
model displays a “purple light” (Smith, 2016) to indicate it should not be interpreted as usual.  

3 Structural model error and its implications: the Hawkmoth 
Effect 

To understand the depth of the problem, it is helpful to unpick the mathematics further. Chaos is 
no longer as fashionable as it was a few decades ago, but most readers will be familiar with the 
so-called Butterfly Effect – the concept that a small difference in initial conditions (perhaps 
stepping on a butterfly) can result in a large difference in the outcome of a complex dynamical 
system over some timescale. This was noticed by Edward Lorenz (1963), coming to his atten-
tion due to slight numerical truncation error in a simple mathematical system. 

In the 21st century, the Butterfly Effect is a solved problem (Judd and Smith, 2001).  To 
account for the possibility of error in the initial conditions, instead of taking a single best-
estimate of the system state, we instead use an ensemble (multiple initial conditions) to 
represent a probability distribution over the initial conditions consistent with both the 
observations and the mathematical model (Judd and Smith, 2001). This ensemble of model 
states is then interpreted as a probability distribution in the real world which encompasses all 
possible outcomes given the uncertainty in the initial conditions, parameter values, and other 
numbers. 

This mathematical solution assumes that the equations of the dynamical system are known 
perfectly, as was the case for Lorenz’s three-dimensional mathematical model. Where our 
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complex model is not an end in itself, however, but a stand-in for a complex real-world system 
such as the Earth’s atmosphere, the economy, or the energy system, then we can say with 
confidence that our model is not perfect (Smith, 2002). We are then in the realm not of initial 
condition error but of structural model error: if our chaotic model is only slightly mathe-
matically mis-specified then a very large difference in outcome will evolve in time even with a 
“perfect” initial condition (Smith, 2007). We term this the Hawkmoth Effect (Thompson, 2013).  

Given a structurally imperfect model and assuming we have managed to procure the 
“uncertainty” at t=0 with a perfect ensemble (such a thing need not exist) , then the probability 
distribution that we arrive at by using this ensemble will grow more and more misleading:  
misleadingly precise, misleadingly diverse, or just plain wrong in general (Figure 2). If the 
model-state space of our model is imperfect, it is impossible to specify a perfect ensemble – 
doing so requires topological conjugacy (Smith, 1995). Nevertheless, it may yield useful 
forecast information for quite a long time (Smith, 2006). The model-state space consists of a 
finite number of real variables and a restricted region of model-state space in which there are 
ensemble members arguably consistent with both the observations and the model’s dynamics. 
Given a perfect model with imprecisely known parameters and imprecisely known initial 
conditions, the challenge is merely one of finding well-defined (but imprecisely known) real 
numbers. Bayesian methods are effective at reducing imprecision (Berger and Smith, 2018). 
Structural model error is different: the Model itself is a function, not a real number. It lies in a 
function space, and it is not at all clear how to put a relevant probability distribution on this 
function space. Neither is it clear why multi-model ensembles are taken to represent a 
probability distribution of future states at all. The distributions from each imperfect model in the 
ensemble will differ from the desired perfect model probability distribution (if such a thing 
exists); it is not clear how combining them might lead to a relevant, much less precise, 
distribution resembling the real-world target of interest (assuming such a thing exists). 
 

 

 

Figure 2: The Hawkmoth Effect.  With a perfect estimation of the uncertainty around the initial condition, 
only a perfect model can result in a perfect specification of the uncertainty in the forecast.  An imperfect 
model may be arbitrarily wrong even when initialised ideally. Note that identical initial conditions have 
finite separation immediately under Model 1 and Model 2; chaotic divergence identical initial conditions 

remain identical for all time.  
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It is sometimes suggested that if a model is only slightly wrong, then its outputs will 
correspondingly be only slightly wrong. The Butterfly Effect (Lorenz, 1963) revealed that in 
deterministic nonlinear dynamical systems, a “slightly wrong” initial condition can yield wildly  
wrong outputs. The Hawkmoth Effect (Thompson, 2013) implies that when the mathematical 
structure of the model is only “slightly wrong” then one almost certainly loses topological 
conjugacy (Smale, 1966). In this case, even the best formulated probability forecasts will be 
wildly wrong in time.  These results from pure mathematics hold consequences not only for the 
aims of prediction but also for model development and calibration, ensemble interpretation and 
of course for the formation of initial condition ensembles. The limitations discussed above apply 
to realistic simulation with differential equations far from geophysics and economics. They 
suggest an ultimate barrier we can never pass if we approach by the mathematical methods of 
today. Both in geophysics and economics of today, there are often much harsher macroscopic 
errors and shortcomings that have not yet been resolved (model-mountains in climate models 
can be kilometres shorter than their real-world namesakes).  

Naïvely, we might hope that by making incremental improvements to the “realism” of a 
model (more accurate representations, greater details of processes, finer spatial or temporal 
resolution, etc.) we would also see incremental improvement in the outputs (either qualitative 
realism or according to some quantitative performance metric). Regarding the realism of short-
term trajectories, this may well be true! It is not expected to be true in terms of probability 
forecasts. And it is not always true in terms of short term trajectories; we note that fields of 
research where models have become dramatically more complex are experiencing exactly this 
problem: the nonlinear compound effects of any given small tweak to the model structure are so 
great that calibration becomes a very computationally-intensive task and the marginal perfor-
mance benefits of additional subroutines or processes may be zero or even negative.  In plainer 
terms, adding detail to the model can make it less accurate, less useful. 

The observation that complex models may be less informative than simple models (or 
comparatively informative but much more costly in terms of computational resource, human 
resource and cold hard cash) may, paradoxically, assist decision-making by providing a 
stopping-point to what is otherwise a potentially endless quest for “more research”, “better 
information” or “less uncertainty” before a decision is made.  How good is a model before it is 
good enough to support a particular decision – i.e., adequate for the intended purpose (Parker, 
2009)? This of course depends on the decision as well as on the model, and is particularly 
relevant when the decision to take no action at this time could carry a very high cost. Ideally, 
one would start with the decision and consider potential models in light of their ability (or lack 
thereof) to inform this decision. Starting in model-land, one can continue forever improving a 
model and exploring the implications of introducing new complexity: evaluating in model-land 
will no doubt show some manner of “improvement.” When the justification of the research is to 
inform some real-world time-sensitive decision, merely employing the best available model can 
undermine (and has undermined) the notion of the science-based support of decision making, 
when limitations like those above are not spelt out clearly (Smith, 2002; Frigg et al, 2015; Smith 
and Petersen, 2014; Beven, 2019; Beven, 2019b). For what tasks is the model considered 
adequate for purpose (Parker, 2019)? Is the extent to which the model is not expected to be 
adequate for a range of purposes of interest presented in a clear and transparent manner?   

http://www.economics-ejournal.org/
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4 Challenges for real-world decision-making 

We have various illustrations of how to extract information from (ensembles of) simulations 
which out-perform naïve statistical model forecasts, and avoid some of the misleading 
assumptions that are unavoidable if one stays in model-land. These illustrations include the 
2018 Pakistan heatwave (Thompson and Smith, 2019), pricing and trading in the energy market 
in week out to two (when constrained by regulation) (Smith (2016)), and experiments designed 
to explore model error in practice for nuclear stewardship.  

In our work with the START Network, a group of humanitarian NGOs, we are looking at 
ways to streamline the use of information from weather (and other) forecasts to anticipate 
humanitarian crises. Following an alert, a 72-hour process decides whether to activate the 
release of funds and then how to allocate money to projects.  In principle, for many situations it 
is possible to determine a timescale of applicability for the forecast.  This can help both when it 
shows that information is available, as it allows confident use of a set of operating procedures 
based on the forecast, and also when it shows that relevant information is not available and the 
decision should be made based on other inputs. In the case of heatwave in Pakistan, it was made 
clear by one of us that a reasonably confident forecast can be made with sufficient lead time 
(several days) to follow START procedures and take actions which help to reduce the likely 
impact on potentially vulnerable groups. As we develop and extend this framework to other 
regions and hazards, such as tropical cyclones and droughts, we expect that in some cases the 
forecast information will be negligible and will then advise that the rapid-turnaround decision 
should focus more on other factors such as social, economic and practical bases for action. 
Taking one set of models off the table is a valuable contribution to the decision process – using 
a mis-informative forecast simply because it is the “best available” is a nonsense.   

Some models are used for convenience, because they are “objective” in the sense of getting 
a single answer under the same input conditions regardless of user (which we note is not at all 
the opposite of “subjective”, since the construction of any model requires expert judgement 
about the applicability of that model and the validity of any assumptions) and because they 
provide an unambiguous guide for policy-making.  An example is the use of DSGE (Dynamic 
Stochastic General Equilibrium) models by many Western academics and Central Banks 
including the ECB. Lack of inclusion of a financial sector (resulting from assumptions about the 
efficiency of markets) was a “Known Neglected” which may well have ruled out the possibility 
of a banking collapse in model-land and the real-world economic consequences experienced in 
2007/8. As with other models, simply “fixing the bug” or adding in the newly-identified 
mechanism each time something unexpected happens, is not a recipe for confident forward 
prediction. 

5 Working in Model-land 

You may be living in model-land if you… 
o try to optimise anything regarding the future; 
o believe that decision-relevant probabilities can be extracted from models; 

http://www.economics-ejournal.org/
https://startnetwork.org/news-and-blogs/getting-ahead-deadly-heat


Economics: The Open-Access, Open-Assessment E-Journal 13 (2019–40) 

www.economics-ejournal.org 9 

o believe that there are precise parameter values to be found; 
o refuse to believe in anything that has not been seen in the model; 
o think that learning more will reduce the uncertainty in a forecast; 
o explicitly or implicitly set the Probability of a Big Surprise to zero; that there is 

nothing your model cannot simulate; 
o want “one model to rule them all”; 
o treat any failure, no matter how large, as a call for further extension to the existing 

modelling strategy. 
 
You may be near the exit if you… 

o are now concerned about your forecast system’s Probability of a Big Surprise; 
o are uncomfortable to realise that given 100x the resources, your team would build a 

better model rather than refine the probability estimates of your current model; 
o are careful to distinguish x from its model-land namesake xmodel; 
o have forsaken the quest for a model that tells you everything, to search instead for 

models that tell you something about your Quantity of Interest; 
o are intrigued by the idea of finding your model’s Relevant Dominant Uncertainty – the 

aspect of the model you should improve first. 
 

It is helpful to recognise a few critical distinctions regarding pathways out of model-land 
and back to reality.  Is the model used simply the “best available” at the present time, or is it 
arguably adequate for the specific purpose of interest? How would adequacy for purpose be 
assessed, and what would it look like? Are you working with a weather-like task, where 
adequacy for purpose can more or less be quantified, or a climate-like task, where relevant 
forecasts cannot be evaluated fully? Mayo (1996) argues that severe testing is required to build 
confidence in a model (or theory); we agree this is an excellent method for developing 
confidence in weather-like tasks, but is it possible to construct severe tests for extrapolation 
(climate-like) tasks? Is the system reflexive; does it respond to the forecasts themselves? How 
do we evaluate models: against real-world variables, or against a contrived index, or against 
other models? Or are they primarily evaluated by means of their epistemic or physical found-
ations? Or, one step further, are they primarily explanatory models for insight and under-
standing rather than quantitative forecast machines? Does the model in fact assist with human 
understanding of the system, or is it so complex that it becomes a prosthesis of understanding in 
itself? 

6 Escaping from Model-land 

There are at least two ways to escape from model-land. The first where possible, is to repeatedly 
challenge your model to make out-of-sample predictions and see how well it performs. This, of 
course, can only be done in weather-like tasks, so named because tomorrow’s weather forecast 
is an excellent example where it can be done. The forecast lead time is much less than a model’s 
typical life time. 
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Here we can not only understand in broad terms the usefulness of the forecast on different 
timescales, but we can also quantify the degree of confidence in its success for different weather 
types and in different seasons. This is precisely the information needed for high-quality decision 
support: a probabilistic forecast, made complete with a statement of its own limitations. One 
should not be advised to attempt to use a detailed weather forecast for this date next year, even 
though it is in principle perfectly possible to make today’s models stable on that timescale and 
extend the simulation. In practice we see that today’s one-year weather forecast contains less 
information than a “physics-free” empirical model which just forecasts the historically observed 
distribution of temperature for the time of year (this distribution is often called the “climato-
logy” or climatological distribution). In addition, sufficient forecast-outcome information is 
generated to allow calculations which will give us an understanding of where, how, or after 
what lead time the model is performing poorly (Smith, 2000; Smith, 2006). This may assist us 
to improve the model itself.  

If the model structure is perfect, the forecast will reflect what might appear to be “non-
stationarity” in the observation, nevertheless “stationarity” is well defined only within model 
land where one can take the required limits in time. If the probabilistic structure of imprecision 
of the observations/measurements is known precisely, the probabilistic forecasts will mirror the 
outcome, and, of course, we are back in model land as we assume we understand the measure-
ment model perfectly. Expert judgement may help us to disentangle the contributions of these 
and other shortcomings of our end-to-end modelling. Whether one wishes to separate the 
imperfections in the measurement model from structural model error is a question merely of 
how data assimilation (Kalnay, 2003) and forecast interpretation (Broecker and Smith, 2008) are 
viewed within the whole of the forecasting system. 

In climate-like tasks, the lead time of interest may be far far longer than the lifetime of a 
model (Smith and Stern, 2011). Here, the problem as stated does not allow out-of-sample 
evaluation given the nature of the question for which support is requested; there is simply not 
enough data available (forecast-outcome pairs) either to construct or to evaluate so detailed an 
understanding of the limitations of a model. We call these climate-like situations. Although one 
may never be as confident in such cases as one is in weather-like cases, there is an alternative 
way to escape from model-land.  Using further expert judgement, informed by the realism of 
simulations of the past, to define the expected relationship of model with reality (Thompson et 
al, 2016) and critically, to be very clear on the known limitations of today’s models and the 
likelihood of solving them in the near term, for the questions of interest. 

An example: the most recent IPCC climate change assessment uses an expert judgement that 
there is only approximately a 2/3 chance that the actual outcome of global average temperatures 
in 2100 will fall into the central 90% confidence interval generated by climate models (IPCC, 
2013 – see footnotes c and d to table SPM.2 on page 23 of the Summary for Policymakers). 
Again, this is precisely the information needed for high-quality decision support: a model-based 
forecast, completed by a statement of its own limitations (the Probability of a “Big Surprise”). 
Structured procedures for generating and formalising expert judgements of this kind are 
available (e.g. Cooke, 1991).   

It is worth noting here that presenting model output at face value as if it were a prediction of 
the real-world, or interpreting simulation frequencies as real-world probabilities, is equivalent to 
making an implicit expert judgement that the model structure is perfect. The IPCC does not 
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make this claim. The approach taken by economic modellers differs from that of climate 
modellers in many interesting ways. We consider one here: Climate modellers tend to present 
fan charts of model output (technically this is “guidance”, not forecast), these simulations are 
then processed to yield a probability forecast, say, by shifting 30% of the probability mass from 
inside to outside the range of the simulation model results. In physical simulation, the fan charts 
are not real-world probabilities, but interpreted with additional expert judgement to inform 
expert probabilities of real-world outcomes. In Economics, the fan charts are the probabilities. 
Consider Figure 3. The original caption discusses what the probabilities are conditioned on; the 
report states clearly that the results of the report are believed to be robust under all Brexit 
scenarios. At other times specific “Known Neglecteds” are stated but not addressed as, for 
example, regarding the impact of Greece leaving the Eurozone.  

Misplaced claims of near perfection can often be shown to be false. Indeed in-sample tests 
have limited power when claiming a model is adequate, but they might easily establish a high 
level of confidence (evidence) that the model is inadequate for a particular economic purpose. 
In that case unqualified presentation of model output results in illusionary accuracy.1 

The IPCC reassignment of probability mass into the tails of the distribution referred to 
above is no small correction, but a first order change (of the order of tens of percentage points 
of probability mass) from one set of model-outcomes to another range of real-world outcomes. 
This is likely to have a nontrivial impact on decisions. This is an expert judgement arrived at by 
the expert lead authors of the IPCC chapter, themselves scientists who worked on the 
underlying models and simulations which went into the generation of the 90% confidence 
interval.  But if many thousands of work-hours have gone into refining the dynamical models 
and statistical techniques which produced the first interval, quantifying and reducing the model-
land uncertainty, their valiant efforts are known to be swamped by the uncertainty which exists 
in the abyss between model-land and the real world. A bridge to escape is sorely needed here. 

In neither route to escape from model-land do we work to indefinitely increase the 
complexity of models.  Where out-of-sample predictions can be tested, they will reveal whether 
each model development does or does not lead to more informative outputs. Where we rely 
more on expert judgement, it is likely that models with not-too-much complexity will be the 
most intuitive and informative, and reflect their own limitations most clearly. Even where we 
cannot test long-range model-based predictions, we can test how well our model can reflect 
(shadow) the past, and learn the phenomena with which they cope most poorly. This informs 
judgement as to how far in the future a given model is likely to be relevant to the evolution of 
the real world.  

In neither route to escape from model-land do we discard models completely: rather, we aim 
to use them more effectively. The choice is not between model-land or nothing.  Instead, models 
and simulations are used to the furthest extent that confidence in their utility can be established, 
either by quantitative2 out-of-sample performance assessment or by well-founded critical expert 
 

_________________________ 

1 We thank a reviewer for stressing this point. 
2 As noted in the review by Arthur Petersen, expert judgement is also needed to judge that the quantitative out-of-
sample performance assessment is sufficiently reliable. 
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Figure 3: The latest Bank of England fan chart for GDP growth (above), unemployment rate (middle) and 
inflation (below). From Bank of England, Inflation Report May 2019. 
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judgement. A wide literature treats the use and calibration of expert judgement in such 
situations although there is certainly more to say about the interplay of model development and 
the parallel development of one’s own expert judgement; and indeed more to say about the 
expert judgements involved in the initial construction and calibration of the model. The 
significant difference between the manner in which economists and physical scientists treat 
imprecision, and their different manner of moving between model-land and the real-world 
suggests the two groups might benefit from frank interaction. 

More generally, letting go of the phantastic mathematical objects and achievables of model-
land can lead to more relevant information on the real world and thus better-informed decision-
making.  Escaping from model-land may not always be comfortable, but it is necessary if we are 
to make better decisions. 
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