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Abstract Climate change is a two-way street during the Anthropocene: civilization depends upon a
favorable climate at the same time that it modifies it. Yet studies that forecast economic growth employ
fundamentally different equations and assumptions than those used to model Earth’s physical, chemical,
and biological processes. In the interest of establishing a common theoretical framework, this article treats
humanity like any other physical process; that is, as an open, nonequilibrium thermodynamic system that
sustains existing circulations and furthers its material growth through the consumption and dissipation of
energy. The link of physical to economic quantities comes from a prior result that establishes a fixed rela-
tionship between rates of global energy consumption and a historical accumulation of global economic
wealth. What follows are nonequilibrium prognostic expressions for how wealth, energy consumption,
and the Gross World Product (GWP) grow with time. This paper shows that the key components that
determine whether civilization “innovates” itself toward faster economic growth include energy reserve
discovery, improvements to human and infrastructure longevity, and reductions in the amount of energy
required to extract raw materials. Growth slows due to a combination of prior growth, energy reserve
depletion, and a “fraying” of civilization networks due to natural disasters. Theoretical and numerical argu-
ments suggest that when growth rates approach zero, civilization becomes fragile to such externalities as
natural disasters, and is at risk is for an accelerating collapse.

Summary Linking physical to economic quantities comes from a fixed relationship between rates
of global energy consumption and historical accumulation of global economic wealth. When growth rates
approach zero, civilization becomes fragile to externalities, such as natural disasters, and is at risk for accel-
erating collapse.

1. Introduction

As with any other natural system, civilization is composed of matter. Internal circulations are maintained
by a dissipation of potential energy. Oil, coal, and other fuels “heat” civilization to raise the potential of its
internal components. Dissipative frictional, resistive, radiative, and viscous forces return the potential of
civilization to its initial state, ready for the next cycle of energy consumption.

Burning coal at a power station raises an electrical potential or voltage allowing for a down-voltage elec-
trical flow. The potential energy is dissipated along the journey from the power station to the appliance.
The appliance sustains people, who themselves dissipate heat. And, because what the appliance does is
useful in their minds, the cycle is completed with the human desire for more coal to burn. Similarly, energy
is dissipated as cars burn gasoline to propel vehicles to and from desirable destinations. Or, people con-
sume food to maintain the circulations of their internal cardiovascular, respiratory, and nervous systems
while dissipating heat and renewing their hunger.

Such cycles are fairly rapid; at least the longest might be the annual periodicities that are tied to agricul-
ture. This paper provides a framework for the slower evolution of civilization, over timescales where rapid
cyclical behavior tends to average out, where the material growth and decay of civilization networks is
driven by a long-run imbalance between energy consumption and dissipation.

As sketched in Figure 1, the approach is to develop a general framework for describing the current state
of systems and their spontaneous emergence, starting from physical first principles and using a simple
theoretical framework outlined previously in Garrett [2012c]. From this point, the paper exploits a fixed
link between rates of global primary energy consumption (or power production) and a general measure
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Figure 1. Diagram of the approach taken in this paper where physical first principles are used to derive analytical expressions for the
long-run evolution of the global economy during the Anthropocene. Black arrows indicate a differential process. Red arrows indicate
an additive or integral process.

of global wealth that was described in Garrett [2011] (see also supporting information). This leads to
prognostic formulae for economic innovation and growth that are expressible in units of currency. The
equations are presented in a form that can be evaluated against available economic statistics for past
behavior. Potentially they may be used to provide physically constrained scenarios for the future, linking
human and natural systems where the two are increasingly becoming coupled.

There have been many prior efforts to link economic models to climate models [e.g., Yohe et al., 2004;
Stern, 2007; Tol, 2009; Nordhaus, 2010. This paper differs by describing the human system in terms of
the same thermodynamic laws that underpin parameterizations of gradients and flows in model repre-
sentations of the earth’s physical processes [e.g., Bitz et al., 2012]. Of course, many might argue that we
should not subject human systems to physical laws due to the complexities of human behavior [Scher and
Koomey, 2011]. Others might note that even physical systems at their most simple can easily become so
sensitive to initial conditions as to become inherently unpredictable. But while we would not dream of
predicting local weather beyond a week or so [Lorenz, 1963], forecasting the global mean surface tem-
perature a century out is an accepted challenge. The primary requirement for maintaining predictability
is that we degrade temporal and spatial resolution. In this case, little or nothing might be said about the
short-term, finer-scale details of the system; yet, broader, constrained forecasts can be made for more
slowly evolving behaviors [Bretherton et al., 2010; Temam and Wirosoetisno, 2011].

From the standpoint of forecasting the human role in climate change, a broad brush may be all that is
necessary given that carbon dioxide is both well-mixed and long-lived in the atmosphere. What the article
presents is long-range prognostic equations for global economic quantities by stepping back and viewing
civilization as a whole, as it evolves slowly over “long” timescales and subject to such global externalities
as resource availability and increasing natural disasters from a changing global climate.

The hope is to help resolve an apparent disconnect between how we forecast Earth’s future during the
Anthropocene, by moving away from traditional macroeconomic models and more toward treating civ-
ilization as a dissipative physical system like any other on our planet. Section 2 of this paper describes
an underlying thermodynamic framework for emergent systems. Section 3 connects this framework to
basic economic quantities. Section 4 discusses prognostic solutions for economic innovation and growth.
Section 5 identifies formulations for distinct modes of growth in economic systems, and Section 6 sum-
marizes the conclusions of this study.
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Figure 2. Schematic for the thermodynamics of an open system within a fixed volume V . Energy reserves, the system, and the
environment lie along distinct constant potential surfaces 𝜇R , 𝜇S , and 𝜇E . Internal material circulations within the system are
sustained by heating and dissipation of energy that is coupled to a material flow of diffusion and decay. The level 𝜇S is a
time-averaged potential. Over shorter time-scales, the legs of a heat-engine cycle would show the system rising up and down
between 𝜇E and 𝜇R in response to heating and dissipation, as shown by the red arrow, allowing for material diffusion to the system
and decay from the system. If flows are in balance then the system is at equilibrium and it does not grow.

2. Energetic and Material Flows to Systems

Before proceeding to a description of the growth of civilization, the starting point is to define what is
meant by “short” and “long” timescales, and then to build from first principles a general thermodynamics
for the emergence and evolution of dynamic systems over long timescales.

In the most abstract sense, the universe is a continuum of matter and potential energy in space. Local
gradients drive thermodynamic flows that redistribute matter and energy over time. In the sciences, we
invoke the existence of some “system” or “particle” from within this continuum, requiring as a first step
that we define some discrete contrast between the system and its surroundings as shown in Figure 2. This
discrete contrast can be approximated by an interfacial jump in potential energy Δ𝜇 between the system
potential 𝜇S and some higher level 𝜇R; or, Δ𝜇=𝜇S −𝜇E with respect to a lower level 𝜇E. Matter that lies
along the higher potential 𝜇R has a higher temperature and/or pressure, so it can be viewed as a “reserve”
for downhill flows that “pour” into the system potential level 𝜇S. Flows also “drain” from 𝜇S to the lower
potential environment lying along the potential surface 𝜇E.

Viewed from a strictly thermodynamic perspective, any system that is defined by a constant potential
must implicitly lie along a surface within which there is no resolved internal contrast, i.e., one where the
assumption is that there is a fixed potential energy per unit matter 𝜇S and no internal gradients. This spe-
cific potential represents the time-integrated quantity of work that has been required to displace each
unit of matter within the surface through an arbitrary set of force-fields that point in the opposite direc-
tion of the potential vector 𝜇: e.g., the gravitational potential per block in a pyramid is determined by the
product of the downward gravitational force on each block and its height.

Although internal gradients and circulations are not resolved within a constant potential surface, the exis-
tence of the continuum requires that they exist nonetheless. When a bathtub is filled, internal gradients
force the water to slosh from side to side. While the short timescale of these small waves might be of inter-
est to a child, a typical adult cares only about the time-averaged water level of the bathtub as a whole, and
that it gradually rises as the water pours in. The definition of what counts as a “system” is only a matter of
perspective. It depends on what timescale is of most interest to the observer looking at the system’s vari-
ability. As a guiding principle, however, coarse spatial resolution corresponds with coarse time resolution
[e.g., Blois et al., 2013].
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The total energy of a system, or its enthalpy HS, can be expressed as a product of the amount of matter in
the system NS and the specific enthalpy given by

etot
S =

(
𝜕HS

𝜕NS

)
𝜇S

(1)

The specific enthalpy can be decomposed into the product of the total number of independent degrees
of freedom 𝜈 in the system and the oscillatory energy per independent degree of freedom eS

etot
S = 𝜈eS (2)

The quantity eS represents the circulatory energy per degree of freedom per unit matter. For example,
nitrogen gas has a specific enthalpy that is the product of the specific heat at constant pressure cp and the
system temperature TS, or etot

S = cpTS. The specific enthalpy can be decomposed into a total 𝜈 = 7 degrees
of freedom at atmospheric temperatures and pressures each with a time-averaged kinetic energy of kT S/2
where k is the Boltzmann constant. Thus,

HS

(
𝜇S

)
= NSetot

S = 𝜈NSeS (3)

Conservation of energy considerations dictate that enthalpy is the energetic quantity that rises when
there is net heating of the system at a constant pressure [Zemanksy and Dittman, 1997], i.e.(

𝜕HS

𝜕t

)
p

=
(
𝜕Qnet

𝜕t

)
p

(4)

and that net heating of the system is a balance between a supply of energy to the system at rate a and a
dissipation at rate d (

𝜕Qnet

𝜕t

)
p

= a − d (5)

The Second Law requires that dissipation redistributes enthalpy to some lower potential, draining some
higher potential reserve. Not all enthalpy in the reserve HR is necessarily available to the system. For
example, unless the temperature of the system is raised to extremely high levels, the nuclear enthalpy of
a reserve HR =mc2 might normally be inaccessible. Thus, available enthalpy is distinguished here by the
symbol ΔHR.

Heating is coupled to material flows through an idealized four step cycle or “heat engine”, whose circu-
lation is shown by the red arrow in Figure 2. A system that is initially in equilibrium with the environment
at level 𝜇E is heated, which raises the potential level of the system 𝜇S an amount 2Δ𝜇 to level 𝜇R with a
timescale of 𝜏heat ∼ 2Δ𝜇/a. It is at this point that, according to the Gibbs-Duhem equation, the surface 𝜇S

comes into diffusive equilibrium with respect to external sources of raw materials, allowing for a mate-
rial flow to the system [Kittel and Kroemer, 1980]. There is then cooling through dissipation of heat to the
environment with timescale 𝜏diss ∼ 2Δ𝜇/d, which brings the system back into diffusive equilibrium with
surface 𝜇E, allowing for material decay.

How the thermodynamics should be treated depends on the question at hand, and whether the timescale
of interest is short or long compared to 𝜏heat.

2.1. Systems in Material Equilibrium Over Short Timescales

Over timescales much shorter than 𝜏heat, the legs of the heat engine are resolved, so that the amount of
matter in a system NS would appear to change sufficiently slowly that it could be considered to be fixed.
In this case, the response to net heating would be that the specific enthalpy per unit matter rises at rate(

𝜕etot
S

𝜕t

)
p,NS

= 1
NS

(
𝜕Qnet

𝜕t

)
p,NS

(6)

For the example that heating is a response to radiative flux convergence, then it may be that the tempera-
ture rises according to

cp

(
𝜕T
𝜕t

)
p,NS

= 1
NS

(
𝜕Qnet

𝜕t

)
p,NS

(7)
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Figure 3. Schematic for the thermodynamic evolution of a system within a constant volume V . Energy reserves, the system, and the
environment lie along distinct constant potential surfaces 𝜇R , 𝜇S , and 𝜇E . The size of an interface N̆𝛥𝜇 between surfaces determines
the rate of heating a and the speed of downhill material flow ja . The system grows or shrinks according to a net material flux
convergence ja − jd along 𝜇S . System growth is related to expansion work w that is done to grow the interface, extending the
system’s access to previously inaccessible energy reserves. The efficiency of work is determined by 𝜖 =w/a.

where cp is the specific heat of the substance at constant pressure and 𝜕Qnet/𝜕t is the radiative heating. In
a materially closed system, the response to net heating is for the temperature to rise.

In the atmospheric sciences, equation (7) expresses the short-term temperature response to radiative
heating [Liou, 2002]. At timescales longer than 𝜏heat, however, the establishment of a temperature gradient
ultimately leads to a diffusive, material flow that restores equilibrium and that we call the wind.

2.2. Systems in Material Disequilibrium Over Long Timescales

Over timescales much longer than 𝜏heat, the legs of the heat engine are not resolved. Instead, because the
heat engine cycles are much faster than the timescales that are of interest to the observer, what is seen is
only some average level of 𝜇S that lies in between the points of maximum and minimum potential energy,
𝜇R and 𝜇E (Figure 2).

In this case, energetic and material flows have the appearance of being instantaneously coupled. An illus-
tration of this coupling is shown in Figure 3, which recasts Figure 2 in terms of a single co-ordinate. Where
there is a disequilibrium, material convergence along a surface of constant potential 𝜇S corresponds with
growth of the system enthalpy at rate(

𝜕HS

𝜕t

)
𝜇S

=
(
𝜕Qnet

𝜕t

)
𝜇S

= etot
S

(
𝜕NS

𝜕t

)
𝜇S

(8)

so that from equation (5), the bulk grows at rate(
𝜕NS

𝜕t

)
𝜇S

=

(
𝜕Qnet∕𝜕t

)
𝜇S

etot
S

= a − d
etot

S

(9)

If there is zero time-averaged net heating, then
⟨(

𝜕Qnet∕𝜕t
)
𝜇S

⟩
= 0 because ⟨a⟩= ⟨d⟩, in which case the

size of the system NS does not change. Like water pouring into and draining from a bathtub at equal rates,
circulations within the system maintain a steady-state. Although local entropy production (𝜕Qnet/𝜕t)𝜇/𝜇
is zero, global entropy

∑
𝜇(𝜕Qnet/𝜕t)𝜇/𝜇 grows from a continuous redistribution of matter through a flow

from high to low values of 𝜇.

Material growth occurs when there is the nonequilibrium condition that energy consumption exceeds
dissipation, in which case

⟨(
𝜕Qnet∕𝜕t

)
𝜇S

⟩
> 0. There is a net convergence of matter along the potential

GARRETT © 2014 The Authors. 131



Earth’s Future 10.1002/2013EF000171

surface 𝜇S at rate jnet. Material flows into civilization at rate ja, and out of civilization at the decay rate jd,
to form a balance defined by

jnet =
(
𝜕NS

𝜕t

)
𝜇S

= ja − jd (10)

so that the timescale for growth of the system is 𝜏growth ∼NS/jnet. Combined with equation (9), this implies
that

ja = a∕etot
S (11)

jd = d∕etot
S (12)

jnet = a − d
etot

S

(13)

A straightforward and familiar example of this physics is what happens when we boil a pot of water. Once
the water reaches the boiling point, the temperature of the water is maintained at a constant 100∘C. Any
energy input from the stove goes into turning liquid water into bubbles. Setting aside the energetics of
forming the bubble surface, and assuming the pot is well insulated, the energy input that is required to
vaporize a single liquid water molecule is etot

S = lv where lv is the latent heat of evaporation at boiling.
Thus, vapor molecules contained in the bubbles are created at a rate that is proportional to the rate of
energetic input: ja = a∕etot

S = a∕lv .

Heating creates an internal circulation of bubbles that we call a boil. When bubbles rise to the surface,
molecules escape the fluid at rate jd, and there is an associated evaporative cooling of the water at rate
d = jdetot

S = jdlv . With a steady simmer, a constant vapor concentration NS is maintained within the pot
because heating equals cooling. In this case, from equation (13), ja ≃ jd and jnet = 0.

If the output from the heating element is suddenly raised to high, then there is a nonequilibrium adjust-
ment period of 𝜏growth ∼NS/(ja − jd) during which heating temporarily exceeds dissipation and bubble
production at the bottom of the pot ja exceeds bubble popping at its top jd. The size and number of vapor
bubbles in the water increases, and a new stasis is attained only when evaporative cooling d rises to come
into equilibrium with the element heating a. At this point, the pot has gone from a simmer to a rolling boil.

2.3. Gradients and Flows in Material Disequilibrium

As shown in Figure 3, a material flow at rate j can be regarded as the diffusion of matter downhill, across
a material interface toward the system. The interface between the system and its higher potential reser-
voirs can be defined by a potential step with a rise Δ𝜇=𝜇R −𝜇S and an orthogonal quantity of material
that lies along the interface N̆. The total energy required to grow the interface is the product of these
two quantities: i.e., 𝛥G = N̆𝛥𝜇. Because the presence of the gradient is required to enable flows, there is
a proportional dissipation of available potential energy ΔHR at rate

a = 𝛼𝛥G = 𝛼N̆𝛥𝜇 (14)

where 𝛼 is a rate coefficient with units of inverse time. The quantity 𝛥G = N̆𝛥𝜇 in equation (14) is a
related but different quantity from the available enthalpy ΔHR =NRΔ𝜇. The available enthalpy is a reserve
of energy that is eventually available to be consumed. In contrast, ΔG represents the gradient that is
instantly available to drive flows due to a material interface between the system and ΔH.

From equations (10) and (11), when a system is considered over long timescales, then energy consump-
tion is coupled to a material flux ja =

(
𝜕NS∕𝜕t

)
𝜇S

. Thus, from equation (14)

ja = 𝛼N̆𝛥𝜇∕etot
S (15)

The magnitude of the interface N̆ reflects the respective sizes of the two components it separates. In gen-
eral, when there is a diffusive flow to a system, N̆ is proportional to a product of the available enthalpy
within a high potential energy “reservoir” ΔHR =NRΔ𝜇 and the size of the system NS taken to a one third
power [Garrett, 2012c], or that

N̆ = kN1∕3
S NR (16)
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where the dimensionless coefficient k is related to the object shape. For a sphere, k = (48𝜋2)1/3 [Garrett,
2012c].

At first glance, one might guess that the system interface should be proportional to NSNR instead of
N1∕3

S NR: both the size of the system and the size of the reserve are what drive flows between the two. In
general, a system’s size is proportional to its volume VS =NS/nS, where NS is the number of elements in
the system and nS is the internal density; VS and NS are proportional to a dimension of length cubed, or
volume. What is important to recognize is that flows to a system are not determined by a volume. Rather,
flows are down a linear gradient that lies normal to a surface. The surface area has dimensions of length
squared or N2∕3

S , and the linear gradient has dimensions of inverse length or N−1∕3
S . Both factors control

the flow rate across the interface, and their product yields a one third power, or a length dimension:
N2∕3

S × N−1∕3
S = N1∕3

S .

The significance is that, if it were assumed that N̆ is proportional to the product NSNR, then the implica-
tion would be that wholes interact with wholes, implying a perfect mixture of the system and its reserve.
The objection to this formulation is that any supposed existence of a perfect mixture would mean that it
would be impossible to resolve flows between NS and NR: the two components of the mixture would be
indistinguishable. A second consequence is that assuming a unity exponent for NS removes any element
of persistence or memory from rates of system growth, as will be shown below. Unphysically it would
isolate what happens in the present from and what has happened in the past. As a general principle, the
Second Law allows for neither perfection nor isolation in our universe.

Since ΔHR =NRΔ𝜇, equations (14) and (15) for energy dissipation and material flows can now be expressed
as

j = 𝛼kN1∕3
S ΔHR∕etot

S (17)

a = 𝛼kN1∕3
S ΔHR (18)

In Garrett [2012c] it was shown that the quantity 𝛼kN1∕3
S can be expressed in an equivalent fashion in

terms of a length density times a diffusivity 𝛬𝒟 , where the length density is analogous to the electro-
static capacitance within a volume and the diffusivity has dimensions of area per time. For the diffusional
growth of a spherical cloud droplet of radius r, vapor condenses at rate j = 4𝜋r𝒟NR∕V , where NR/V is
equivalent to the excess vapor density relative to saturation. In this case 𝛼kN1∕3

S 𝒟 = 𝛬𝒟 = 4𝜋r𝒟∕V .
For more dendritic structures like snowflakes, there is no clearly definable “radius”, yet it is still a length
dimension within a volume Λ or “capacitance density” that drives diffusive growth [Pruppacher and Klett,
1997].

Thus, the flow and dissipation equations can be alternatively expressed as

j = 𝒟𝛬𝛥HR∕etot
S (19)

a = 𝒟𝛬𝛥HR (20)

The rate of material flows is proportional to a rate of energy dissipation a, which in turn is proportional to
some measure of the length density within the system Λ or its accumulated size NS to a one third power,
and the number of potential energy units in the reserve NR =ΔHR/Δ𝜇. The final component is etot

S , which
expresses the amount of energy that must be dissipated to enable each unit of material flow toward the
system.

2.4. Efficiency and Growth

As described above, a system grows if there is an imbalance so that net heating drives an accumulation of
matter in the system through diffusive material flows (equations (10) and (13)). Growth of the size of the
system NS increases an interface with the energy reserves 𝛥G = N̆𝛥𝜇 that enable diffusive flows.

Taking the approach that the resolved “rise” of the interface Δ𝜇 is fixed, then future flows evolve because
the magnitude of the “step” N̆𝛥𝜇 grows laterally in response to a convergence (or divergence) of current
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flows (Figure 3). Here, this material expansion or “stretching” of the interface N̆ and the potential differ-
ence ΔG is termed “work” w, where

w =
(
𝜕𝛥G
𝜕t

)
𝜇R ,𝜇S

=
(
𝜕N̆
𝜕t

)
𝜇R ,𝜇S

𝛥𝜇 (21)

The efficiency of converting heating to a rate of doing work is normally defined by the ratio

𝜖 = w
a

(22)

Here efficiency can be either positive or negative depending on whether the interface is shrinking or
growing in response to heating, and therefore on the sign of w (equation (21)).

From equation (21), the relative growth rate of the interface can be defined by

𝜂 = w
𝛥G

= d ln𝛥G
dt

= d ln N̆
dt

(23)

where 𝜂 has units of inverse time. In other words, 1/𝜂 is the characteristic time for exponential growth of
ΔG and N̆.

Since from equations (21) and (22), w =dΔG/dt = 𝜖a and from equation (14), a= 𝛼ΔG, it follows that the
relationship between the growth rate 𝜂 and the efficiency 𝜖 and the heating rate a is given by

𝜂 = 𝛼𝜖 (24)

= d ln a
dt

(25)

This formulation has the advantage of expressing 𝜂 in terms of a measurable flux a. The implication is
that systems that are efficient are able to incorporate matter more quickly; such efficient incorporation
causes the system to accelerate growth of an interface with respect to energy reserves. Ultimately, higher
efficiency allows the system to consume energy more rather than less.

For the special case of pure exponential growth where 𝜂 is a constant, then a= a0 exp(𝜂t), but, more gen-
erally, nothing is ever fixed in time: 𝜂 constantly changes as the interface evolves, and it can even change
sign if it shrinks. The growth rate 𝜂 is positive if the efficiency 𝜖 is greater than zero meaning that the sys-
tem is able to do net work on its surroundings in response to heating (i.e., d ln N̆∕dt > 0). Otherwise, the
growth rate is negative and the system collapses (i.e., 𝜖 < 0 and d ln N̆∕dt < 0).

2.5. Emergence, Diminishing Returns, and Decay

In the case of the pot of boiling water that was discussed previously, there was an external agency that
had its hand on the energetic flow. “Emergent systems” differ from this situation by displaying a spon-
taneous development of structure. One way to illustrate how emergence works is shown in Figure 3.
Here, heating and dissipation sustain internal circulations. If heating exceeds dissipation then, over longer
timescales, a net incorporation of matter into the system allows it to expand into newly accessible energy
reserves. The thermodynamic recipe for emergence is only that sufficient energy reserves exist to be “dis-
covered” in order to sustain the disequilibrium between heating and dissipation that drives growth.

Emergent phenomena are ubiquitous in nature. After all, something must emerge at some point for us
to observe it. Where emergence is commonly discussed is with regards to living organisms, since they
survive by eating, drinking, and inhaling a matrix of matter and potential energy, which is then diffused
through a linear of network of vascular structures. Consumption of the potential energy in carbohydrates,
proteins, and fats sustains the organism and facilitates an incorporation of water, chemicals, vitamins, and
minerals. Meanwhile, heat is dissipated, and matter is lost, through a combination of radiation, perspira-
tion, exhalation, and excretion.

The flow of raw materials and the dissipation of potential energy are coupled within cardiovascular, res-
piratory, gastro-intestinal, and nervous networks. Over short timescales, dissipation is tied to the internal
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circulations that allow for further consumption. In the long-run though, where consumption is in excess
of dissipation, flows are out of equilibrium, and the organism networks grow. The demand for energy by
the organism goes toward sustaining internal circulations within previously grown networks and toward
furthering greater network growth.

For a given availability of energy supplies ΔH =NRΔ𝜇, then from equations (16) and (23) the instantaneous
growth rate is related to the system size NS or its network length density Λ through

𝜂 =
(
𝜕 ln N̆
𝜕t

)
NR

(26)

=

(
𝜕 ln N1∕3

S

𝜕t

)
NR

(27)

=
(
𝜕 lnΛ
𝜕t

)
NR

(28)

If the rate of emergent growth 𝜂 is positive then a positive feedback loop dominates and this length
dimension grows exponentially (i.e., Λ=Λ0 exp(𝜂t)). Negative values of 𝜂 correspond with decay.

From equations (10) and (27), the rate of emergent growth can be related to rates of material consumption
ja and decay jd through

𝜂 = 1
3NS

(
𝜕NS

𝜕t

)
NR

(29)

= 1
3

ja − jd

∫
t

0

(
ja − jd

)
dt′

(30)

= 1
3

jnet

∫
t

0
jnetdt′

(31)

Note that the timescale for growth of the system discussed earlier 𝜏growth is related to the growth rate of
flows through 𝜂 = 3/𝜏growth.

A “decay parameter” 𝛿 can be defined as the rate of material decay relative to the rate of material con-
sumption

𝛿 =
jd

ja

(32)

and, since the current system size is the time integral of past net material flows, NS = ∫
t

0
jnetdt

′
, it follows

that the rate of emergent growth is given by

𝜂 = 1
3
(1 − 𝛿)

ja

NS

(33)

= 1
3

(1 − 𝛿) ja

∫
t

0
(1 − 𝛿) jadt′

(34)

The final step is to account for the motive force for current flows to the system, which is obtained by
substituting equation (17) into equation (33) to yield

𝜂 = 𝛼k (1 − 𝛿)
N1∕3

S NR𝛥𝜇

NSetot
S

(35)

= 𝛼k (1 − 𝛿)
ΔHR

N2∕3
S etot

S

(36)
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Equation (35) for emergent growth has seven parameters. Three—𝛼, k, and Δ𝜇—have been considered
to be constants in this treatment (i.e., 𝜂 represents a partial derivative). With this condition, current growth
rates 𝜂 are determined by the quantity of energy ΔHR =NRΔ𝜇 that is available to drive material flows to
the system; the amount of energy etot

S that must be dissipated to incorporate each unit of matter into the
system; the fraction 1− 𝛿 of this new matter whose addition is not offset by decay; and, crucially, past
flows leading to the current system size NS: as past flows grow a system, there is a natural propensity for
the growth rate to slow with time.

The memory of past growth introduces a “law of diminishing returns”. As was mentioned above, had it
been assumed that flows were proportional to NSNRΔ𝜇 rather than N1∕3

S NR𝛥𝜇 in equation (17), then this

dependence of current growth rates on past flows ∫
t

0
jnetdt

′
would not be present—the NS terms would

have canceled in equation (35). Clearly, this would be inconsistent with our observations of emergent
systems. Expressed logarithmically, large objects tend to grow more slowly than small objects. And, the
growth of all emergent systems is somehow tied to the past through existing matter that has been accu-
mulated from prior growth. “Great oaks from little acorns grow”.

3. Thermodynamics of the Growth of Wealth

The above discussion is intended to be quite general for system evolution. Here civilization can be consid-
ered as a special case. Taken as a whole, civilization might be viewed as an example of a living emergent
system that consumes a matrix of matter and energy. For civilization, “food” includes raw materials such as
water, wood, cement, copper, and steel. The potential energy is contained in fossil fuels, nuclear fuels, and
renewables. The linear networks are our roads, shipping lanes, communication links, and interpersonal
relationships.

Over short timescales, civilization can be characterized by the internal circulations that govern our daily
lives, including our bodily functions, commuting to work, and communications. But, as shown by compar-
ing Figures 3 and 4, if civilization is examined with an eye to more slowly evolving behaviors, where the
internal circulations are not explicitly resolved, then energy consumption at a rate a enables civilization
to raise raw materials across a potential energy barrier. This then enables an incorporation through diffu-
sion of matter into civilization’s bulk at rate ja. The amount of energy that is required to turn raw materials
into the stuff of civilization is the enthalpy of rearranging matter into a new form. Section 2.2 included a
discussion of how heating transforms liquid into vapor within a pot of boiling water. A similar “phase tran-
sition” can be seen when we burn oil to extract such things as iron ore and trees from the ground, and
then reconfigure raw materials from their low potential, natural state into carefully arranged steel girders
and houses.

In what we might call the economy, energy consumption sustains all of civilization’s existing internal circu-
lations against a continuous dissipation of heat at rate d and a material decay at rate jd. Civilization radiates
heat to space while we and our physical infrastructure fall apart.

If civilization consumes energy at rate a through the exothermic reaction of primary energy reserves (e.g.,
through combustion and nuclear reactions), and it dissipates energy at an equivalent rate d, then the size
of civilization stays fixed. But if there is a positive disequilibrium between consumption and dissipation,
then a remnant of consumed power is able to go toward incorporating new raw materials at rate ja − jd .
The new materials grow a length density of civilization networks Λ.

So civilization might be considered to fall under a class of “emergent systems” because this disequilib-
rium allows civilization to expand into new reserves of raw materials and energy; the expansion leads to
a positive feedback that accelerates emergent growth. From equation (26), growth rates are equivalent
to an expansion of a length density Λ that is tied to the system’s accumulated bulk to a one third power
N1∕3

S . The growth rate can be thought of as a lengthening and concentration of the networks that form
civilization’s fabric.

From equation (35), we can infer that civilization growth is promoted when a combination of the following
three conditions are satisfied: civilization has access to large reserves of available energy ΔHR =NRΔ𝜇;
the amount of energy etot

S that is required to incorporate raw materials into civilization’s structure is low;
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Figure 4. Representation of Figure 2 in terms of global economic wealth C and economic production Y , as linked to rates of primary
energy consumption a and the size of an interface with respect to energy reserves N̆. Economic production Y is tied to interface
growth, representing the material expansion of civilization through a linear growth of its networks. Growing networks increase the
capacity to draw from newly accessible energy reserves. Energy consumption sustains civilization circulations against dissipation to
the environment at rate d.

and civilization does not fray too quickly, or that the decay parameter 𝛿 = jd/ja expressing relative rates of
decay is small.

In what follows, these concepts are extended to provide specific formulations for the long-term evolution
of civilization, expressible in such purely economic terms as rates of return on wealth, economic produc-
tion, innovation, and technological change.

3.1. Expression of Economic Quantities in Thermodynamic Terms

In Garrett [2011], it was hypothesized that global rates of energy consumption a can be linked to a very
general metric of global economic wealth C through a constant 𝜆:

a = 𝜆C (37)

where current wealth is the time integral of past inflation-adjusted economic production

C = ∫
t

0
Y
(

t
′
)

dt
′

(38)

The motivation for these expressions is that global energy consumption at rate a sustains the short
timescale internal circulations of civilization against an associated power dissipation d. If the capacity to
sustain the global economy’s circulations is what we implicitly value, then primary energy consumption
should be fundamentally tied to a general representation of economic wealth (Figure 4). Such compli-
cating factors as debt and trade do not need to appear in equation (38) because wealth is inclusive of all
civilization elements.

The hypothesis that 𝜆 is a constant is falsifiable. Since the Gross World Product (GWP) is the total produc-
tivity within a period of one year, equation (38) can be calculated from

Ci =
∑

i

GWPi (39)

where i is a time index starting from the beginnings of civilization.

Equation (37) can be tested using historical estimates of world GWP Maddison [2003] and available statis-
tics for global primary energy consumption as outlined in Garrett [2011], Garrett [2012a], and in the sup-
porting information for the article here. What was found is that, when expressed in inflation-adjusted US
year 2005 dollars, 𝜆 has maintained a steady value for each of forty-one years of observations. Effectively,
what sustains the purchasing power embodied in each one thousand dollar bill, and distinguishes it from
a mere piece of paper, is a continuous 7.1± 0.1 W of primary energy consumption.
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For example, in the year 2010, a global wealth of US $2352 trillion was supported by 16.9 terawatts of pri-
mary energy consumption; and, in 1980, $1300 trillion 2005 was sustained by 9.6 terawatts. The ratio of
these two quantities remained essentially unchanged in each year between 1970 and 2010, with a stan-
dard deviation of just 3% over a time period when wealth increased by 111% and GWP increased by 238%.

The implication is that economic wealth can be considered to be a human representation of the magni-
tude of the associated circulations that power consumption can support. The identity a= 𝜆C is important
because it presents the possibility of using the tools of physics to evaluate and forecast economic growth.

There are not only similarities but also some important differences between this approach and standard
macroeconomic models. Wealth C, as defined by equation (37), has units of currency it might appear to be
much like the term “capital” K that is used in traditional economic treatments [e.g., Solow, 1956],

There is a key difference, however. The term capital is normally reserved for the additive value of fixed
“physical” structures such as bank accounts, buildings and roads. Economic output Y is not considered
to be directly additive to physical capital unless it is a “savings” or “investment” that is not immediately
“consumed” by people. The motivation for subtracting “consumption” from output is that it seems log-
ical to separate people from nonliving structures. The argument is that the economy is human. Human
labor L uses physical capital K to enable future consumption by humans. It is certainly not perceived to
be the reverse where, e.g., cars use people as a means to access gasoline which they then consume while
enabling the creation of more people. Rather, the presumption is that human consumption of food in
the distant past should be subtracted from production because it has no obvious relationship to physical
capital in the present.

Certainly the traditional approach offers a self-consistent way to track financial accounts. However, it
would appear to violate physical laws because it does not appeal foremost to a coupling of energy dis-
sipation and material flows, something that has been pointed out by a few economists. The suggested
remedy has been to include energy among labor and capital as a factor of production [e.g., Costanza,
1980; Georgescu-Roegen, 1993; Warr and Ayres, 2006; Kümmel, 2011].

But even if energy is included as one factor of production, there remain two important drawbacks to this
approach. One is that, where some combination of labor, capital, and energy are included as distinct ele-
ments of production, the production functions lack dimensional consistency: the most commonly used
form is Y =AL𝛼K𝛽 where A is a variable and 𝛼 and 𝛽 are noninteger exponents. Further, the models are nei-
ther falsifiable nor inherently prognostic since A, 𝛼, and 𝛽 are tuned to historical economic statistics rather
than derived from first principles.

More importantly, the traditional treatment of additive capital and economic consumption appears
to violate the Second Law of Thermodynamics. Although sometimes overlooked, perhaps the most
profound implication of the Second Law is that it forbids the existence of isolated systems, either in space
or time. By necessity, everything is connected through dissipative flows, even if the connection is very
remote.

Assuming the Second Law applies equally to human systems, it would seem problematic to treat some-
thing like physical capital as being purely mathematically additive, as is presumed in traditional treat-
ments. A better perspective might be that the magnitude of civilization wealth lies in its connections or a
network, insofar as network elements allow for the dissipative flows that sustain it.

People need houses as much as houses need people in order to maintain their respective worth; removing
one affects the utility of the other. Even our perceptions of worth cannot be meaningfully separated from
our cardiovascular system and stomachs; each has no independent economic worth as each needs each
other to work. Value lies not in any element individually but rather in its connections.

The Second Law would also require that human consumption cannot simply disappear to the past, as is
presumed in traditional models (and expressed in past criticisms of the approach here [Cullenward et al.,
2011]. All past actions unavoidably have some connection to present actions. Or, in the language of time
series analysis, all natural systems are “reddened” such that they exhibit a bias toward low frequency vari-
ability. Even if someone is only “consuming” a hamburger, a hamburger is nourishing and satisfying in a
way that does more than to simply sustain current short timescale human interactions with the rest of

GARRETT © 2014 The Authors. 138



Earth’s Future 10.1002/2013EF000171

civilization. It also carries some lingering, long timescale memory of the pleasures of hamburger con-
sumption into the future. Another example could be that figs and barley eaten by the ancient Greeks
facilitated in some small way the construction of the monuments, culture, and population growth that
sustain modern Greece today.

Thus, there is no embodied value within any object by itself, as is sometimes considered [Costanza, 1980].
There is only value insofar as something currently has ties with other elements of civilization, as they have
been built up over time. A brick of solid gold is worthless—if it is forgotten and lost in the middle of the
desert. The same brick is worth much more if it facilitates financial flows as part of a previously built eco-
nomic network. Wealth includes people, their knowledge, their buildings, and their roads, but only to the
extent that they are interconnected through networks to the rest of the accumulated whole.

So the alternative approach that is proposed here is to treat civilization as a system with constant spe-
cific potential 𝜇S as shown in Figure 4, one whose collective wealth is an economic expression of how its
elements are intertwined through networks that mutually support global scale diffusive and dissipative
flows. From equations (14) and (37)

C = 𝛼

𝜆
N̆𝛥𝜇 (40)

where through equation (16), N̆ is related to the system size through N1∕3
S and a quantity of potential

energy NRΔ𝜇 Or, from equation (20)

C = 𝒟
𝜆
𝛬𝛥HR (41)

The financial value of civilization lies in the accumulated length density of a global network 𝛬 =

∫
t

0
d𝛬∕dt

′
dt

′
, with the caveat that the total network must be coupled to reserves of potential energy ΔHR

through an interface so that there can be diffusive flows with diffusivity 𝒟 . As will be discussed in more
detail below, and is illustrated in Figure 4, the consumption of potential energy is tied to wealth C, but
consumption is not part of production Y . Instead, consumption is orthogonal to production. Production
of value occurs only when heating exceeds dissipation in the consumptive flow. In this case, there is
material growth of the length of the interface between civilization and its energy reserves. Economic
production how we value civilization growth.

Value or wealth can have many forms. One may be the linear networks that diffuse energy from a coal
fired power plant to a toaster—insofar as there is coal and an unbroken electrical grid (and the home-
owner likes toast). Or, there is value in cars and roads that transport people and goods—insofar as there is
a supply of petroleum and the roads and vehicles are maintained. The diffusion of knowledge and goods
within human systems might be expressed in terms of a network length density and a proximity to intel-
lectual and material resources. In fact, this is an approach that has previously been employed by a few
others, albeit in less strictly thermodynamic terms [e.g., Barabási and Albert, 1999; Jackson, 2010; Bahar
et al., 2012; Bettencourt, 2013].

Of course, the complexity of civilization is extraordinary, so treating it as a physical system might seem
overly simplistic. Certainly, it would be extremely challenging if not impossible to model all possible net-
work interactions. But, as a first step, thermodynamic principles offer the simplification of lowering res-
olution so that human and physical capital are regarded at global scales, with the trade-off that nothing
can be said about the internal details, except perhaps in a statistical sense [e.g., Ferrero, 2004]. A global
scale economic model can say nothing about unemployment in the European Union or the trade imbal-
ance between the United States and China. But, a straight-forward link between physical and economic
quantities allows for stepping back to view civilization as a whole.

3.2. Thermodynamics of Nominal and Inflation-Adjusted Economic Production

Where economic wealth is defined holistically by C = ∫
t

0
Y
(

t
′)

dt
′

(equation (38)), there appears to be a

fixed relationship to thermodynamic flows through a= 𝜆C (equation (37)). Thus, the physical principles
described in Section 2 can provide the basis for the derivation of prognostic expressions for economic
quantities. The first that is described here is the growth of wealth through inflation-adjusted economic
production.
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The simplest and most physical expression of the production function is that it is orthogonal to consump-
tion so that it adds directly to economic wealth as it has been defined above. Taking the derivative of
equation (38)

Y = dC
dt

(42)

where Y is inflation-adjusted (or real) economic output or productivity, with units of currency per time.
However, since a= 𝜆C, w = 𝛥𝜇dN̆∕dt, and from equations (40) and (41), any of the following expressions
also apply, where 𝛼, 𝒟 , and 𝜆 are constants:

Y = 1
𝜆

da
dt

(43)

= 𝛼

𝜆
w (44)

= 𝒟
𝜆

d
dt

(
𝛬𝛥HR

)
(45)

Thus, economic production is an expression of the amount of physical work w that is done to increase the
network density Λ and available energy reserves ΔHR. Real production is valuable only to the extent that
it accelerates the energetic flows a that sustain the circulations in civilization. (Figure 4).

From equations (24) and (37), a more purely economic expression of the production function is one that is
related to wealth and rates of energy consumption through

Y = dC
dt

= 𝜂C (46)

where, 𝜂 is a variable rate of emergent growth for thermodynamic systems. For economic systems, the
rate of emergent growth 𝜂 can be termed the “rate of return” since, like money in the bank, it expresses
the growth rate of global wealth through

𝜂 = d ln C
dt

(47)

From equations (13) and (28), the rate of return and economic production are positive when energy con-
sumption exceeds dissipation, or when the incorporation of new raw materials exceeds physical decay.
In contrast to traditional economic treatments, consumption is not part of economic production. Rather,
economic production equates to the net material growth of civilization, insofar as it grows an interface
with available energy supplies (Figure 4). Real production is a consequence of a convergence of materials
flows that arises from an imbalance between consumption and dissipation. It is the historical accumula-
tion of this imbalance that leads to the current wealth and capacity to consume.

Long-term statistics for the evolution of 𝜂 are described in Garrett [2011] and Garrett [2012a]. In recent
years, the inflation-adjusted rate of return has reached an all-time high of slightly more than 2.2% per
year, although it has largely ceased to rise any further.

The balance of forces that determines the evolution of 𝜂 was explored in Garrett [2012b] which presented
a model that couples civilization growth to climate change. It was argued that the rate of return 𝜂 can be
expressed in terms of two components 𝜂 = 𝛽 − 𝛾 , expressing a source and a sink, in which case production
is related to wealth through

Y = (𝛽 − 𝛾) C

= Ŷ − 𝛾C (48)

where 𝛽 is a coefficient of nominal production, Ŷ = 𝛽C is the nominal economic output, and 𝛾C is the
magnitude of any correction to nominal production that is required to yield inflation-adjusted real pro-
duction. From equation (29), the source is related to material consumption through

𝛽 =
ja

3NS

(49)
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and, the sink is related to material decay through,

𝛾 =
jd

3NS

(50)

or, from equation (32)

𝛾 = 𝛿
ja

3NS

(51)

Expressed thermodynamically, 𝛽 can be viewed as a rate coefficient for interface growth and 𝛾 as a rate
coefficient for interface decay, each with units of inverse time.

What is interesting is that there is a simple link here to rates of inflation. Normally, the GWP deflator is
what is used to represent the degree of any revisions to calculations of nominal output, i.e., the nom-
inal GWP is revised downward by a factor Ŷ∕Y . The GWP deflator is linked to inflation insofar that it is
estimated from price changes in a very broad, moving basket of goods. For inter-annual calculations,
the factor by which the nominal GWP must be adjusted to be compared to the nominal GWP in a prior
year is:

GWP Deflator = Ŷ
Y
≃ 1 + ⟨i⟩ (52)

where ⟨i⟩ is the calculated average inflation rate for the year. Assuming the inflation rate is much less than
100% per year, it follows that

⟨i⟩ = ĜWP − GWP

ĜWP
≃ Ŷ − Y

Ŷ
=

⟨𝛾⟩⟨𝛽⟩ (53)

From equations (49) and (51), this leads to the very simple result that global-scale inflation rates can be
viewed as a economic expression of the decay parameter 𝛿 = jd/ja:

⟨i⟩ = ⟨𝛾⟩⟨𝛽⟩
≃ ⟨𝛿⟩ = ⟨jd⟩⟨ja⟩ (54)

What this analysis suggests is that civilization decay and global inflation are two sides of the same coin.
Decay corresponds to an inflationary pressure because it “devalues” the productive capacity of exist-
ing assets. It takes away that which has previously been built, learned, or born. A “fraying” of networks
occurs because people die or forget, buildings crumble, and machines oxidize. For example, it has been
estimated that 10% of our twentieth century accumulation of steel has been lost to rust and war [Smil,
2006]. Where human and physical networks fall apart, there is a diminished capacity to enable the ther-
modynamic flows that sustain civilization wealth. Any monetary assets that were previously created to
support human and physical wealth no longer possess the same real purchasing power. To see the sources
of inflationary trends, since ja = a∕etot

S (equation (11)) and a∝ΔHR (equation (17)), then assuming that etot
S

changes slowly

d ln ⟨i⟩
dt

=
d ln ⟨jd⟩

dt
−

d ln ⟨ja⟩
dt

≃
d ln ⟨jd⟩

dt
−

d ln ⟨𝛥HR⟩
dt

(55)

so, rising inflation might occur if material decay jd accelerates, perhaps from the types of global scale
natural disasters that might be associated with climate change [Zhang et al., 2007; Lobell et al., 2011].
Alternatively, inflation might be driven by a declining availability of energy reserves ΔHR [Bernanke et al.,
1997].

As a caution, traditional interpretations of price inflation [e.g., Parkin, 2008] may not be a perfect match for
the treatment described here. Pure price inflation is a form of devaluation that arises because the existing
money supply has a lower purchasing power with respect to some predefined basket of goods. Inflation is
often viewed as being simply a matter for control of the money supply by central banks.
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However, banks are not resolved in the very general expression of global wealth C that has been discussed
here, which extends beyond money and physical assets to comprise a “basket of goods” that includes all
our physical and human relationships and networks. The implication is that inflation through devaluation
does not necessarily apply to monetary assets alone. Devaluation might also arise from such factors as
depopulation through wars, or because previously acquired skills are no longer needed by others because
our capacity for work goes idle for lack of an energetic impetus. For instance, car production might fall if
oil becomes scarce and expensive. The workers and their factories remain but the external demand for
petroleum driven transportation declines and this leads to car manufacturer layoffs and unemployment
[Lee and Ni, 2002]. In fact, an apparent short-term trade-off between unemployment and price inflation is
well known in the field of Economics and has been termed the “Phillips Curve” [Phillips, 1958].

4. Thermodynamics of Global Technological Change, Innovation, and Growth

Thus far, it has been shown that an economic growth model can be defined by the coupled equations
for the production function for real output Y , and the growth of real wealth C given by dC/dt = Y and
Y = 𝜂C, where 𝜂 is a variable rate of return on wealth. As described here and in Garrett [2011], these
equations can be viewed as being a more thermodynamically justified (and dimensionally self-consistent)
form of the Solow-Swan neo-classical economic growth model [Solow, 1956] that is typically used to
estimate the social costs of preventing and adapting to climate change [Yohe et al., 2004; Stern, 2007;
Tol, 2009; Nordhaus, 2010]. Here C is a generalized form of physical capital (K) that encompasses labor
(L), and 𝜂 is analogous to the total factor productivity (A), whose changes relate to technological change
(d ln A/dt).

Technological change is often seen as a primary driver of long-run economic growth [Solow, 1957], and a
potential tool for limiting future energy consumption and carbon dioxide emissions [Nakicenovic, 2004;
Pacala and Socolow, 2004; Raupach et al., 2007; Raupach et al., 2007; Pielke et al., 2008]. The source of
technological change remains somewhat of a puzzle; however, there has been a shift toward regarding
it as having endogenous origins, perhaps due to government investments in research and development
[Romer, 1994].

What follows shows how the forces behind technological change can also be seen in light of a more
strictly thermodynamic context. Viewed globally, the rate of return 𝜂 evolves according to a determinis-
tic expression obtained by taking the partial derivative of the logarithm of equation (35), holding fixed the
rate, shape, and specific potential 𝛼, k, and Δ𝜇:

d ln 𝜂

dt
= −2

dNS∕dt

3NS

+ d ln (1 − 𝛿)
dt

+
d ln𝛥HR

dt
−

d ln etot
S

dt
(56)

= −2𝜂 + 𝜂𝛿 + 𝜂net
R − 𝜂e

= −2𝜂 + 𝜂tech (57)

Here the term d ln 𝜂/dt is referred to as economic innovation because positive values of equation (56) rep-
resent an acceleration of existing rates of return 𝜂. Innovations are what are required for rates of return on
wealth to rise. Defining 𝜏𝜂 = 1/(d ln 𝜂/dt) as the characteristic time for innovation, then wealth grows from
an initial value C0 as

C = C0e
𝜂𝜏𝜂

(
et∕𝜏𝜂−1

)
(58)

If innovation is positive, then wealth grows explosively or super-exponentially. In the limit of no innova-
tion and 𝜏𝜂 →∞, the growth of wealth reduces to the simple exponential form C = C0 exp(𝜂t).

Since a= 𝜆C, the form of equation (58) applies equally to rates of energy consumption, and if the car-
bonization of the energy supply is nearly fixed, then to carbon dioxide emission rates as well [Garrett,
2011]. In what is sometimes termed Jevons’ Paradox, technological gains accelerate global energy
consumption and carbon dioxide emissions by increasing the efficiency of civilization growth into the
reserves of energy that sustain it. For a further discussion, see Garrett [2012b].
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The sum 𝜂tech = 𝜂𝛿 + 𝜂net
R − 𝜂e is termed here as the rate of technological change 𝜂tech because it is the driv-

ing force behind innovation d ln 𝜂/dt. It represents the sum of reductions to net decay (𝜂𝛿), rates of net
energy reserve expansion (𝜂net

R ), and reductions in the amount of energy required to access raw materials
(−𝜂e).

It should be mentioned that equation (56) could be expanded to include variability in 𝛼, k and Δ𝜇.
However, in this treatment these quantities are held fixed, partly in the interests of simplicity, and partly
because a quantity like civilization shape is difficult to quantify with available statistics. By taking the
partial derivative, the emphasis shifts instead to how best to define variability in the energy reserve
ΔHR =NRΔ𝜇. If the “rise” Δ𝜇 is treated as being fixed, NR might be expressed by civilization in units of
millions of barrels of oil equivalent (mmboe), where the fixed potential energy of combustion contained in
one barrel is equivalent to Δ𝜇. With respect to the rate and shape coefficients 𝛼 and k, energy economists
distinguish between energy “resources” and energy “reserves” [Höök et al., 2010]. Resources represent
what is potentially available to be exploited. Reserves represent what is currently accessible given existing
technological, physical, and political considerations. The presumption that is made here is that ΔHR rep-
resents reserves not resources. Variability in 𝛼 and k would represent more efficient access of resources.
If 𝛼 and k are fixed, the variability is manifested instead in changes in the statistics for what civilization
considers to be reserves.

The following examines each component of technological change in equation (56) in more detail.

4.1. Innovation Through Increased Longevity

The first component of technological change is 𝜂𝛿 , which relates to reductions in the decay parameter 𝛿
(equation (32)). From equation (54), and assuming that the global inflation rate is much less than 100%,
the decay parameter is approximately equal to the inflation rate through ⟨i⟩≃ ⟨𝛿⟩. In this case, the first
order expansion in 𝜂𝛿 yields

𝜂𝛿 =
d ln (1 − 𝛿)

dt
≃ −

d ⟨𝛿⟩
dt

(59)

Since 𝛿 = jd/ja (equation (32)), one way of interpreting 𝜂𝛿 is through

𝜂𝛿 = − 1
ja

(
𝜕jd

𝜕t

)
ja

(60)

or, for a given rate of material consumption ja, innovation is favored by decreasing decay rates jd. If people
are enabled to live longer through advancements in health [Casasnovas et al., 2005], or their structures are
built so that they last longer [Kalaitzidakis and Kalyvitis, 2004], then this is a form of positive technological
change that contributes to faster growth. From equation (54), it follows that this innovative force would
show up in global scale economic statistics as declining inflation and/or unemployment. In other words:

𝜂𝛿 ≃ −
d ⟨𝛿⟩

dt
≃ −

d ⟨i⟩
dt

(61)

4.2. Innovation Through Discovery of Energy Reserves

The expression 𝜂net
R refers to the net rate of expansion of available energy reserves such as fossil fuels ΔHR.

Having a newly plentiful supply of energy accelerates economic innovation and growth [Smil, 2006; Ayres
and Warr, 2009].

There are two forces here. One is for energy reserves to decline due to potential energy consumption at
rate a. The second is that civilization discovers new reserves of energy at rate D. The balance is given by

d lnΔHR

dt
=

Discovery − Depletion
Existing

= D − a
ΔHR

= 𝜂D − 𝜂R (62)

Net reserve expansion occurs when rates of reserve discovery 𝜂D exceed rates of reserve depletion 𝜂R,
requiring that 𝜂D/𝜂R > 1.
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As illustrated in Figure 4, civilization consumes energy as it grows, and it grows into surroundings that
may or may not contain new reserves of fuel [Murphy and Hall, 2010]. If 𝜂D/𝜂R > 1, then civilization dis-
covers new reserves faster than it depletes previously discovered reserves. In some global sense, faster
growth follows because current energy consumption becomes “cheaper” relative to the existing quantity
of wealth C that was built from past consumption.

4.3. Innovation Through Increased Efficiency of Raw Material Extraction

The expression − 𝜂e in equation (56) refers to changes in the specific enthalpy of civilization etot
S . Since

etot
S = a∕ja (equation (11)), a decline in etot

S would appear as a decrease in the amount of power a that is
required for civilization to extract raw materials and incorporate them into civilization at rate ja.

Comparing equations (28) and (29), civilization networks grow through raw material consumption. If
growing civilization requires less energy per unit matter, then civilization can grow faster for any given
rate of global energy consumption a. This is an innovative force because the material growth of civilization
increases access to the resources that sustain it. Effectively, since economic wealth and energy consump-
tion are linked, raw materials become cheaper.

For example, roads improve our ability to access and consume new reserves of energy and raw materials.
But it takes energy and raw materials to build roads. While a given length of road requires a more or less
fixed amount of bitumen, efficiency gains can be made if less energy is required in order to mine bitumen
and lay asphalt. Lowering the specific enthalpy of road production etot

S = a∕ja means that more roads can
be built for a given amount of current energy consumption. Thereby, civilization is able to accelerate its
growth into existing and new reserves of energy and raw materials.

4.4. Diminishing Returns as a Drag on Innovation

The final term in equation (56), − 2𝜂, expresses a drag on how fast rates of return can grow. Innovation
slows naturally due to a law of diminishing returns. In the absence of technological change, wealth con-
verges on a steady-state where rates of return approach zero. This is a result that also appears in more
traditional frameworks [Romer, 1986]), but where the economy is viewed as a physical system, diminishing
returns is a consequence of the dilution of current growth within the accumulated bulk built from past
growth (equation (35)). Each incremental addition of raw materials into civilization jnet has a decreasing

impact relative to the summation of previously incorporated matter ∫
t

0
jnet

(
t
′)

dot
′
. The consequence

is that the rate of return slows unless technological change is sufficiently rapid. Mathematically, from
equation (56), what is required for net innovation with increasing growth rates is that the technological
change rate exceed the current rate of return by a factor of 2, and 𝜂tech > 2𝜂.

5. Modes of Growth and Decay in Economic Systems

5.1. Technological Change and Rates of Return

The above expressions open the way to deterministic solutions for global wealth and energy consump-
tion. Previous studies have identified characteristic sigmoidal or logistic behavior in the effects of tech-
nological change on economic growth. They show that, after overcoming a period of initial resistance,
technological change appears to initially accelerate growth, but it is then followed by saturation [Landes,
2003; Smil, 2006; Marchetti and Ausubel, 2012]. In Garrett [2011] similar behavior was shown in long-term
historical statistics for 𝜂, where rates of return accelerated exceptionally rapidly between 1950 and 1970
but have leveled off since (see also the supporting information).

Equation (56) can also be expressed in the form of the logistic equation

d𝜂
dt

= 𝜂tech𝜂 − 2𝜂2 (63)

If rates of technological change 𝜂tech are constant, then the solution has the sigmoidal or “S-curve” form

𝜂 (t) =
G𝜂0

1 + (G − 1) exp
(
−𝜂techt

) (64)
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Table 1. Modes of Growth in Economic Systemsa

Innovation DR and TC DR and TD Decay Collapse

Growth number 𝜂tech/2𝜂0 G> 1 0<G< 1 G< 0 G> 1 G< 1

Initial rate of return 𝜂0 > 1 𝜂0 > 0 𝜂0 > 0 𝜂0 < 0 𝜂0 < 0

Limiting rate of return 𝜂tech/2 𝜂tech/2 0 0 −∞

aDR, diminishing returns; TC, technological change; TD, technological decline.

where 𝜂0 is the initial value for the rate of return, and

G =
𝜂tech

2𝜂0

(65)

represents a “growth number” [Garrett, 2012c] that partitions solutions for 𝜂(t) into varying modes of
growth summarized in Table 1.

In this framework, the four modes of growth that are available to civilization are innovation, diminishing
returns, decay, and collapse. Each is partitioned by the growth number G and the initial rate of return 𝜂.
Innovation is characterized by growing rates of return; diminishing returns is associated with declining
rates of return, either to a limiting value 𝜂tech/2 or to zero. Where rates of return are initially negative, decay
rates either slow with time to approach zero, or they accelerate in which case civilization enters a mode of
collapse.

Figure 5 carves these modes within a space of 𝜂tech and 𝜂, along with associated trajectories for any given
value of 𝜂tech. For example, for values of G> 1, civilization is in a mode of innovation because technological
innovation is sufficiently rapid to overcome diminishing returns. At first, rates of return increase expo-
nentially. They then saturate to approach a value of G𝜂0 = 𝜂tech/2. If 𝜂 is initially 1% per year and rates of
technological change 𝜂tech are sustained at a nominal 4% per year, then one would expect rates of return
𝜂 to grow sigmoidally toward 2% per year. The exponential phase of the sigmoidal growth would have a
characteristic time of 1/𝜂tech, or 25 years.

5.2. Technological Change and GWP Growth

Changes in GWP growth rates are the most commonly cited quantity in discussions of mitigation and
adaptation to climate change [Tol, 2009]. Since Y = 𝜂C (equation (71)), and the rate of return is given by
𝜂 =d ln C/dt (equation (47)), it follows that:

d ln Y
dt

= 𝜂 + d ln 𝜂

dt
(66)

Thus, GWP growth rates are a simple sum of the current rate of return 𝜂 and the innovation rate d ln 𝜂/dt.
GWP growth increases when there is innovation, and it declines otherwise.

From equation (56), the rate of return itself evolves at rate d ln 𝜂/dt =− 2𝜂 + 𝜂tech, where rates of tech-
nological change 𝜂tech = 𝜂𝛿 + 𝜂net

R − 𝜂e are a summation of reductions to net decay, net energy reserve
expansion, and improvements to the efficiency of raw material extraction and incorporation into civiliza-
tion. Since GWP growth is related to the sum of the innovation rate and the rate of return in equation 66,
it follows that:

d ln Y
dt

= −𝜂 + 𝜂tech (67)

The GWP growth rate is buoyed when,
𝜂tech > 𝜂 (68)

which, since 𝜂 =d ln a/dt, means that, in the long run, GWP growth rates increase only when technologi-
cal change is more rapid than the current rate at which energy consumption is growing.

One way to express equation (68) is to suppose that technological change is driven by the net discovery
of new energy reserves as described by equation (62). In this case equation (68) can be rewritten as

da
dt

> ΔHR (D − a) a (69)
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Figure 5. Modes of growth in economic systems, partitioned within a space of rates of technological change 𝜂tech and rates of return
on wealth 𝜂. Arrows represent trajectories for rates of return, assuming that 𝜂tech is a constant. The dotted region shows the domain
of parameter space associated with GWP growth. See text for details.

Equation (69) is a logistic equation for energy consumption [Bardi and Lavacchi, 2009; Höök et al., 2010].
The implication is that GWP growth requires ever increasing energy consumption, which itself is sustained
only when discovery of new reserves at rate D exceeds their depletion at rate a. Meanwhile energy con-
sumption grows at rate da/dt so discoveries must keep pace. In a fossil fuel economy, maintained GWP
growth cannot be decoupled from accelerating carbon dioxide emissions.

5.3. Fragility and Growth

On the other side of growth is decay and collapse. How does this happen? While growth must initially be
positive for civilization to emerge, positive growth cannot be sustained forever. Civilization networks are
always falling apart, and presumably in a world with finite resources, we will eventually lose the capacity
to keep fixing them. What is interesting is that there is no spontaneous mathematical transition between
the various modes of growth that are implied by equation (64). In the limit of t →∞, rates of return 𝜂 either
asymptotically approach a constant value, or they tend toward collapse.

So it would seem that transitions between modes must be forced by some external impetus such as
an increase in the sorts of natural disasters that might be anticipated in the face of climate change. For
example, in equation (35), if the decay parameter 𝛿 = jd/ja is greater than unity, then 𝜂 must be negative.
If some disaster suddenly forced material decay to exceed material consumption, then civilization would
transition from positive to negative rates of return. Of course, things can go both ways. Equation (35) also
allows for conditions that might suddenly favor growth, including decreased decay or significant discov-
eries of new energy reserves that increase ΔHR. As they have in our past, these conditions might permit
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Figure 6. For an initial value for the rate of return 𝜂0 of 0.5% per year, lines are trajectories of the evolution of 𝜂(t) for scenarios with
rates of technological change 𝜂tech of 3% per year and -1% per year, as given by equation (64). The shaded region is derived from the
upper and lower 5% bounds in an ensemble of 10,000 simulations where noise (inset) has been introduced that has a standard
deviation of 0.1% per year for 𝜂.

civilization to transition from a mode of diminishing returns into one of innovation and super-exponential
growth.

To account for both the good and the bad in the future, stochastic and largely unpredictable external
events might be represented by introducing noise to equation (35). An example of how this might play
out is illustrated in Figures 6 and 7. If there is no noise, then trajectories follow the logistic solutions
provided by equation (64). But if random Gaussian noise is added to 𝜂, then the range of possible tra-
jectories broadens. Notably, there are “unlucky” trajectories that could be associated with frequent and
persistent global scale natural disasters. Disasters might push civilization into a transition toward a mode
of irreversible decay or collapse. Most notably, a transition is particularly likely when rates of return
approach zero.

The existence of “tipping points” where there has been a “slowing down” appears to be a feature of eco-
logical and climate systems [Dakos et al., 2008, 2011]. What is interesting in the simulations above is that
the most dramatic rates of collapse are associated with trajectories that were initially associated with inno-
vation and super-exponential growth. It might seem that the same conditions that allow for the human
system to respond especially quickly to favorable conditions are the same ones that allow the system to
rapidly decay when conditions turn for the worse.

As illustrated in Figure 5, an innovative economy that enjoys relatively rapid technological change with
a growth number G> 1 might alternatively be viewed as a “bubble economy” that lacks long-term
resilience. Whether collapse comes sooner or later depends on the quantity of energy reserves available
to support continued growth and the accumulated magnitude of externally imposed decay. By contrast,
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Figure 7. For the scenarios shown in Figure 5, corresponding values of global inflation-adjusted wealth, referenced to 100 in year 0.
Wealth corresponds to energy consumption through a= 𝜆C and likewise to carbon dioxide emission rates, provided the
carbonization of fuels holds steady.

an economy that is less innovative, with lower rates of return 𝜂, has a lower risk of rapid rates of decline.
In the space shown in Figure 5, it lies “farther away” from modes of collapse.

6. Summary

This paper has presented a physical basis for interpreting and forecasting global civilization growth, with
the intent that it might be used to develop a consistent theoretical basis for forecasting interactions
between humanity and climate during the Anthropocene.

The perspective is that, like a living organism [Vermeij, 2009], energy consumption and dissipation drives
material flows to civilization. If there is a net convergence of matter within civilization, then civilization
grows. Growth increases the availability of new and existing reserves of matter and energy, and this leads
to a positive feedback loop that allows growth to persist or even accelerate.

These rather general thermodynamic results can be expressed in purely economic terms because there
appears to be a fixed link between global rates of primary energy consumption and a very general expres-
sion of human wealth: 𝜆= 7.1± 0.1 Watts of primary energy consumption is required to sustain each
$1000 of civilization value, adjusting for inflation to the year 2005 (see supporting information and Garrett
[2012a]).

It was argued that wealth does not rest in inert “physical capital”, as in traditional treatments. Rather,
wealth can be interpreted to include all aspects of civilization, even the purely social. Value lies in the
density of a network of connections between civilization elements, insofar as this network contributes
to a global scale consumption and dissipation of energy (equation (41)). Global economic production Y is

GARRETT © 2014 The Authors. 148



Earth’s Future 10.1002/2013EF000171

positive when consumption exceeds dissipation, and there is a net diffusion of matter to civilization that
grows its size.

This leads to an economic growth model for wealth C and economic production Y that is more simple,
physical, and dimensionally self-consistent than mainstream models:

dC
dt

= Y (70)

Y = 𝜂C (71)

where Y is directly proportional to a lengthening of civilization’s networks and growth of its energy
reserves. The real rate of return on wealth 𝜂 is somewhat analogous to the total factor productivity in
traditional models. Prognostic expressions for 𝜂 presented here show that its value is determined by a
combination of rates of civilization decay, the quantity of available energy reserves, the amount of energy
required to incorporate raw materials into civilization’s structure, and the accumulated size of civilization
due to past raw material flux convergence. Current values of the rate of return can be inferred from
equation (71). For example, current global rates of return are about 2.2% per year [Garrett, 2012a]. Trends
in 𝜂 can be forecast based on estimates of future decay and rates of raw material and energy reserve
discovery (equation (56)).

Thus, this paper offers a set of prognostic expressions for the growth of civilization, expressible in
economic and energetic terms that can be linked to physically measurable quantities. The implications
that have been described are summarized as follows:

• Civilization inflation-adjusted wealth is sustained by global energy consumption and grows only as fast.
• Some combination of price inflation and unemployment is related to rates of civilization decay.
• Rates of return on wealth decline in response to accelerated decay or increased resource scarcity.
• Rapid rates of current growth act as a drag on future rates of growth.
• Rates of return grow when there is “innovation” through technological change.
• The GWP grows when energy consumption grows super-exponentially (at an accelerating rate), or

when global energy reserve discovery exceeds depletion.
• If growth rates of wealth approach zero, civilization becomes fragile with respect to externally forced

decay. This appears to be particularly true if prior growth was super-exponential.

Many of these conclusions might seem intuitive, or as if they have been expressed already by others
within more traditional economic perspectives. What is novel in this study is the expression of the eco-
nomic system within a deterministic thermodynamic framework where a very wide variety of economic
behaviors are derived from only a bare minimum of first principles.

More importantly, a sufficient set of statistics exists for global economic productivity, inflation, energy
consumption, raw material extraction and energy reserve discovery that the nonequilibrium solutions
presented here can be evaluated and falsified with no requirement for any a priori tuning or fitting to
historical data. Such evaluation will be addressed in Part II. Specifically, it will be shown that the logistic
equation given by equation (64) closely matches the evolution of global economic rates of return since
1950, allowing for observed rates of technological change defined by equation (56). Logistic behavior has
been recognized in the evolution of human empires throughout history [Marchetti and Ausubel, 2012]. It
will be shown to be evident in global rates of economic growth as well.

Global civilization has enjoyed explosive growth since the industrial revolution, but it is unclear how long
this can be sustained when it is facing ongoing resource depletion, pollution, and climate change. Global
economic wealth is tied to energy consumption, and energy consumption through combustion is tied to
carbon dioxide emissions. Without a sufficiently rapid switch to noncarbon sources of energy, growing
wealth is necessarily linked to growing emissions.

Yet accumulating carbon dioxide in the atmosphere is also likely to drive accelerating civilization decay
through amplified hydrological extremes, storm intensification, sea level rise, and mammalian heat stress
[Hansen et al., 2007; Solomon et al., 2009; Vermeer and Rahmstorf , 2009; Sherwood and Huber, 2010]. The
prognostic expressions that have been derived here might be useful to help guide a physically plausible
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range of future timelines for civilization growth and decay, particularly in models that couple human and
climate systems during the Anthropocene.
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