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Abstract
We directly exploit the stochasticity of the internal variability, and the linearity of the forced response to make global tem-
perature projections based on historical data and a Green’s function, or Climate Response Function (CRF). To make the 
problem tractable, we take advantage of the temporal scaling symmetry to define a scaling CRF characterized by the scaling 
exponent H, which controls the long-range memory of the climate, i.e. how fast the system tends toward a steady-state, and 
an inner scale � ≈ 2   years below which the higher-frequency response is smoothed out. An aerosol scaling factor and a 
non-linear volcanic damping exponent were introduced to account for the large uncertainty in these forcings. We estimate the 
model and forcing parameters by Bayesian inference which allows us to analytically calculate the transient climate response 
and the equilibrium climate sensitivity as: 1.7+0.3

−0.2
  K and 2.4+1.3

−0.6
  K respectively (likely range). Projections to 2100 accord-

ing to the RCP 2.6, 4.5 and 8.5 scenarios yield warmings with respect to 1880–1910 of: 1.5+0.4
−0.2

K , 2.3+0.7
−0.5

  K and 4.2+1.3
−0.9

  K. 
These projection estimates are lower than the ones based on a Coupled Model Intercomparison Project phase 5 multi-model 
ensemble; more importantly, their uncertainties are smaller and only depend on historical temperature and forcing series. The 
key uncertainty is due to aerosol forcings; we find a modern (2005) forcing value of [−1.0,−0.3] Wm

−2 (90 % confidence 
interval) with median at −0.7 Wm

−2 . Projecting to 2100, we find that to keep the warming below 1.5 K, future emissions 
must undergo cuts similar to RCP 2.6 for which the probability to remain under 1.5 K is 48 %. RCP 4.5 and RCP 8.5-like 
futures overshoot with very high probability.
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1  Introduction

The atmosphere is a complex system involving turbulent 
processes operating over a wide range of scales starting 
from millimeters at the Kolmogorov dissipation scale up 
to the size of the Earth, spanning over 10 orders of magni-
tudes in space. The dynamics are sensitive to initial condi-
tions and there are deterministic predictability limits that 
are roughly equal to the eddy turn-over time (lifetime) of 
structures. For planetary scale structures in the atmosphere, 
the overall deterministic prediction limit of about 10 days 
corresponds to the scaling transition timescale �w from the 
weather regime to the macroweather regime (Lovejoy and 
Schertzer 2013a).

The atmospheric components of GCMs exhibit the same 
weather-macroweather scaling transition as the atmosphere 
and similar predictability limits. Beyond this horizon, the 
internal variability has to be interpreted stochastically so 
that a single GCM run is only one realization of the random 
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process; at these timescales, weather models effectively 
become stochastic macroweather generators. For projec-
tions over multi-decadal timescales and beyond, multi-model 
ensembles (MME) that include several models are used. The 
mean of the MME is taken to obtain the deterministic forced 
component of temperature variability and average out the 
internal variability (Collins et al. 2013).

Emergent properties of the Earth’s climate, i.e. proper-
ties which are not specified a priori, are then inferred from 
GCM simulations. The equilibrium climate sensitivity (ECS) 
is such a property; it refers to the expected temperature 
change after an infinitely long time following a doubling in 
carbon dioxide ( CO2 ) atmospheric concentration. Another 
is the transient climate response (TCR), which is defined 
as the change in temperature after a gradual doubling of 
CO2 atmospheric concentration over 70 years at a rate of 
1% per year. However, it is not clear whether such emer-
gent properties from computational models can be taken as 
genuine features of the natural world. The difficulty is that 
each GCM has its own climate (“structural uncertainty”) 
and this leads to very large discrepancies in ECS and TCR 
between GCMs; this underscores the need for qualitatively 
different approaches which can narrow down the properties 
of the real climate directly from observations.

The ecological consequences of global warming could be 
dire; therefore, better constraining climate sensitivity is of 
utmost importance in order to meet the urgency of adjusting 
economical and environmental policies. Since the United 
States National Academy of Sciences report (Charney et al. 
1979), the likely range for the ECS has not changed and 
remains [1.5, 4.5]K . A likely range corresponds to a 66% 
confidence interval (CI) and a very likely range corresponds 
to a 90% CI (Mastrandrea et al. 2010). In the Fourth Assess-
ment Report (AR4) of the Intergovernmental Panel on Cli-
mate Change (IPCC), the lower limit was revised upward 
by 0.5 K, in accordance with the very likely range for ECS 
of GCMs from the Coupled Model Intercomparison Project 
phase 3 (CMIP3) ([2.1, 4.4] K). In the Fifth Assessment 
Report (AR5), the lower limit returned to that of AR3 and 
earlier assessment reports because of new observation-
based results, while the very likely range of CMIP phase 5 
(CMIP5) GCMs ([1.9, 4.5] K) remained very close to the 
CMIP3 one.

In this paper, we extend the approach of Hébert and Love-
joy (2018) to make climate projections through 2100. The 
approach is based on historical data and a simple model of 
the system memory based on scaling symmetries. The out-
put of our model is then evaluated against the instrumental 
record using Bayes’ rules in order to obtain a probabilistic 
estimate of its parameters.

The paper is structured in 3 sections : methods and mate-
rial, results and conclusion. The methods and material 

section is divided in three sub-sections. First, we introduce 
the linear response framework and then describe the scaling 
climate response function considered. Secondly, the radia-
tive forcing, temperature and GCM simulations used will be 
described, and thirdly, we explain the method used for the 
estimation of the model parameters. The results section is 
also divided into three parts. The first sub-section presents 
the probability distribution functions for the parameters and 
applies them to decompose the anthropogenic and natural 
forced signals, and the internal variability. The second sub-
section estimates the ECS and TCR with the parameters 
found, and the third uses the same parameters to produce 
global projections to 2100 which are better constrained than 
a 32 CMIP5 GCMs MME with which they are compared.

2 � Methods and material

2.1 � The linear response framework

The approach used in this study builds on the work of Has-
selmann and other authors who worked within the linear 
response framework applied to the climate (Budyko, Sell-
ers, Schwarz, Li and Jarvis, Held et al., Von Hateren, Ryp-
dal and Rypdal, Dijkstra, Geoffroy et al., Marshall et al.). 
Below we first provide a review of this work for context. The 
reader solely interested in the current approach can jump to 
Sect. 2.2 without loss of continuity.

The internal components of the Earth system are often far 
from thermodynamic equilibrium, yet, taken as a whole, the 
Earth is not so far from an energy balance with outer space, 
and, at any moment, the difference between the incoming 
and outgoing energy fluxes is stored in the soil, ocean and 
atmosphere. The deviations from energy balance are typi-
cally small—at the level of a few percent—and this justifies 
the linear response framework. In this paper, we consider 
“zero-dimensional” energy balance models in which the 
Earth’s globally averaged temperature T(t) and forcing F(t) 
are anomaly time series, i.e. they represent deviations from 
their reference values.

The earliest linearized temperature response models were 
the Budyko-Sellers energy balance models based on the heat 
equation (Budyko 1969; Sellers 1969). These were originally 
one dimensional (zonally averaged) models, which, when 
globally averaged, are equivalent to the single “box” model 
(Hasselmann et al. 1993). Global energy balance box mod-
els are models of the temperature based on a homogeneous 
“box”. The box has a spatially uniform temperature that stores 
energy according to its heat capacity, density and size. If 
there is a single box, and one asssumes Newton’s law of cool-
ing and that the heat crossing the surface is proportional to 
the first derivative of the order differential relationship with 
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temperature, then, when perturbed, the Earth’s temperature 
will relax in an exponential way to its new steady-state tem-
perature. When extra boxes are added, they mutually exchange 
heat, leading to a total response that is the sum of exponentials.

Hasselmann et al. (1993, 1997) already noted that it was 
desirable to use the more general linearized framework of 
response functions. This, they argued, was because empiri-
cal box models with a small number of degrees of freedom 
“lose the detailed information on the climate state and 
therefore cannot be readily constrained to conform to the 
detailed linearized dynamics of a more realistic CGCM 
climate model.” In this context, the response functions are 
called “climate response functions” (CRFs) and, following 
Hasselmann et al. (1993), we have a choice between the 
equivalent impulse CRFs G�(t) and step CRFs G�(t) . The 
subscript “ � ” indicates Dirac delta function and “ � ” is for 
its integral, the step (Heaviside) function ( � = 1 for t > 0 
and � = 0 for t ≤ 0).

Hasselmann et al. (1993) and especially Hasselmann et al. 
(1997) already pointed out the advantages of the step CRF 
that relates the forcing and temperature via:

where the F�(t) is the time derivative of the forcing F(t) and 
s is the equilibrium climate sensitivity (ECS) with units 
of K per doubling of CO2 (see Eq. 15 below). While Has-
selmann et al. (1993) incorporated the sensitivity into the 
definition of G�(t) , writing the response with the separate 
factor s has the advantage that G�(t) is dimensionless and s 
and F(t) have their usual dimensions. For generality, we have 
also extended the range of integration to cover the entire 
past. In advocating Eq. 1, Hasselmann et al. (1997) pointed 
out that “The formulation of the climate response in terms of 
a response integral (i.e. step response) rather than in the tra-
ditional form of a differential equation for a box model has 
further advantages: it is not limited to simple low-order dif-
ferential equations...”. Another advantage, later emphasized 
by Marshall et al. (2014, 2017), ) is that, physically, basing 
the theory on G�(t) is equivalent to studying the tempera-
ture response in classical CO2 doubling experiments; other 
advantages are discussed below. The equivalence between 
the impulse and step CRFs arises because the step function 
�(t) is the integral of �(t) so that:

The temperature response in terms of G�(t) rather than G�(t) 
can thus easily be obtained by integrating Eq. 1 by parts to 
yield:

(1)T(t) = s∫
t

−∞

G�(t − t�)F�(t�)dt�,

(2)G�(t) = G�

�
(t)

(3)T(t) = s∫
t

−∞

G�(t − t�)F(t�)dt�

In the integration by parts, we used Eq. 2 and the bound-
ary conditions G�(0) = 0 and F(−∞) = 0 . Since causality 
requires G�(t) = G�(t) = 0 when t ≤ 0 , the former condi-
tion G�(0) = 0 is satisfied by physical systems. Similarly, the 
relation F(−∞) = 0 is not a restriction as it can be regarded 
simply as the definition of a convenient reference level of 
the forcing.

Unfortunately, without more assumptions or informa-
tion, the linear framework of Eq. 1 (or Eq. 3) is unman-
ageably general. In order to make progress, Hasselmann 
et al. (1997) proposed a response function consisting of 
a sum of N exponentials - effectively an N box model 
(although without using differential equations: the boxes 
were only implicit). Nevertheless, they ultimately chose 
N = 3 out of practical necessity—so as to fit GCM out-
puts. Following the more usual procedure of deriving 
the impulse responses from linear differential equations 
(where impulse CRFs are called “Green’s functions”), Li 
and Jarvis (2009) used Laplace transforms to explicitly 
show that polynomial forcings of nth ordered differen-
tial equations (with constant coefficients and with n an 
integer), can quite generally be reduced to sums of expo-
nentials. However, in the application part of their paper, 
they nevertheless used the value N = 3. The N exponential 
model was later advocated by van Hateren (2013), by the 
IPCC AR5 (2013, section 8.SM.11.2), and more recently 
by Frederiksen and Rypdal (2017). However, each expo-
nential has its own amplitude and time constant so that 
even if we exclude the climate sensitivity parameter, the 
N exponential models have 2N parameters. This rapidly 
becomes an unmanageably large number so that in practice 
N = 2 or N = 3 are often chosen.

An interesting exception is van Hateren (2013) who used 
N = 6 , but avoided fitting the implicit 2N = 12 independent 
parameters by linking the amplitudes and time constants by 
a power law, calling the resulting four parameter model a 
“fractal climate response” model. His resulting step CRF 
model specifies four parameters: low and high frequency 
truncations, a logarithmic oscillation frequency and an over-
all scaling exponent. In the model we develop below, we 
eliminate the unnecessary oscillations and low frequency 
cutoff, thus reducing the step CRF to only two parameters. 
Using van Hateren’s empirically fitted parameters yields an 
impulse response that over the range of about 6 months to 
1000 years is within a factor of ≈ 2 of our two-parameter 
model described below. For comparison, the key exponent 
H (denoted by q in his notation) was estimated as −0.15 
compared to our value of −0.5+0.4

−0.5
 (below).

An approach related to the scaling CRF we develop 
below is that of Procyk et al. (2020) which is based on 
the Earth energy balance. A fractional generalization 
of conventional box models was considered and solved 
using Mittag–Leffler functions, often called generalized 
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exponentials, also characterized by a scaling exponent H 
which was estimated as H ∈ [0.33, 0.44] and is equivalent 
to the negative of the SCRF’s H (below).

Although these authors proposed exponentials largely 
on mathematical grounds, the majority of linear response 
theory applications attempt to give physical interpretations 
of their parameters, especially their time constants, and 
these have not been very satisfactory. If each exponential 
can be modelled by a box that effectively stores heat, then 
it is not clear what the box should represent physically. 
If one chooses the atmosphere (e.g. Dijkstra 2013), then 
one obtains a short relaxation time � of the order of days, 
whereas if one chooses the ocean, then a wide range of 
time scales can be obtained depending on the thickness of 
the relevant ocean layer.

Several estimates of the fast � , which would corre-
spond to the rapidly equilibriating mixed-layer of the 
ocean, find values below 10 years: � = 8.5 ± 2.5  years 
(Schwartz 2008), � ≈ 4 years (Held et al. 2010), � ∈ [1, 6] 
years (Geoffroy et al. 2013), � = 4.3 ± 0.6 years (Rypdal 
and Rypdal 2014). The estimates of the slow component, 
which would correspond to the deep ocean, are widely 
divergent and Geoffroy et al. (2013) concludes it should be 
between 60 and 700 years, an interval spanning an order 
of magnitude well above what can be directly probed from 
historical observations. The IPCC AR5 suggests a double 
exponential model with � = 8.4 years and � = 409.5 years.

But the box models are overly simple: in reality, the 
earth is highly heterogeneous with dynamical processes 
redistributing energy over a huge number of degrees of 
freedom, and a multitude of storage mechanisms, cover-
ing a wide ranges of scales. What we really need is a phe-
nomenological model that is approximately valid for the 
globally averaged temperature, an equation that is valid at 
time scales longer than the weather scales (about 10 days). 
Once we accept that our equation is at best valid for aver-
ages (globally and over weather scales), it is no longer 
necessary to constrain the model to a single—or even a 
small number of degrees of freedom—slabs or boxes.

When F(t) is a step function, Eqs. 1 and 3 describe a 
linear system that is perturbed by a forcing and that sub-
sequently relaxes to a new steady-state temperature. The 
problem is that the range of time scales over which the sys-
tem reacts to a forcing is huge; indeed, due to scaling sym-
metries, as recognized by Rypdal (2012) and van Hateren 
(2013), the response is closer to a power law. We therefore 
seek to go beyond exponentials, while still restricting our 
attention to CRFs that correspond to processes which can 
relax to a stable state of energy balance. To see what con-
straints such “generalized” relaxation imposes, the step 
CRF is particularly convenient.

For example, for a physical system, a finite step forcing:

must give a finite response. Since in Eq. 1 we included the 
extra sensitivity factor s , without loss of generality we can 
consider only normalized step CRF such that:

Since sF0 is the new steady-state temperature, s is the usual 
ECS. In addition, G� should be constrained to functions such 
that a steady state is established monotonically; we should 
exclude step responses that oscillate or that overshoot the 
steady state before returning to it:

In addition, the response to a positive forcing should be posi-
tive so that combining these constraints, and using Eqs. 5, 6 
and causality ( G�(0) = 0 ) we obtain :

Systems whose step CRFs respect Eqs. 6 and 7 thus define 
physically plausible generalized relaxation processes. As 
an example, the classical relaxation box/exponential model 
yields:

where � is the “relaxation time”, the characteristic time asso-
ciated with the return to a state of energy balance. We see 
that the approach to the steady-state is exponentially fast. 
Although the box model is usually specified via a differen-
tial equation, from the above, we see that it could equiva-
lently be specified by G�, box(t) ; indeed, it is easy to verify 
that G�, box(t) satisfies the standard box-model relaxation 
equation:

Taking derivatives, we also confirm that G�, box(t) = G�

�, box
(t) 

is indeed the impulse response for the operator.
Other simple CRF’s have been proposed, notably the Dirac 

function itself with a lag t0:

Which implies:

This has been used by Lean and Rind (2008) (with t0 = 10 
years as part of multiple regression), and directly by Lovejoy 
(2014) who varied t0 in the range 0–20 years. In both cases, 

(4)F(t) = F0𝛩(t); 𝛩(t) =

{
1 when t ≥ 0

0 when t < 0

(5)limt→∞G�(t) = 1

(6)G�

𝛩
(t) = G𝛿(t) > 0

(7)0 ≤ G�(t) ≤ 1

(8)
G𝛩, box(t) = 1 − e

−t

𝜏 ; G𝛿, box(t) = 𝜏−1e
−t

𝜏 ; t > 0

G𝛩, box(t) = G𝛿, box(t) = 0; t ≤ 0

(9)�
dG�, box

dt
+ G�, box = �(t)

(10)G�(t) = �(t − t0); G�(t) = �(t − t0)

(11)T(t) = sF(t − t0)
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the forcing was at annual or longer temporal resolution so 
the response was not really instantaneous as Eq. 10 implies.

2.2 � Scaling relaxation processes

The Dirac CRF has essentially no memory, and the box 
model has an exponentially decaying one, neither is satis-
factory, unless they are combined into a model with multiple 
response times. To be more realistic, the CRF should satisfy 
scaling symmetries (respected for example by the GCMs 
in control runs); we should therefore choose functions that 
correspond to scaling (power law) relaxation processes. The 
simplest scaling CRF (SCRF) that satisfies Eqs. 5 and 6 is:

where the requirement H < 0 is needed so that 
limt→∞ G�(t) = 1 and the truncation at a small timescale � 
is necessary so that G�(0) = 0 . This step SCRF describes a 
power law relaxation process, thus converging more slowly, 
and realistically, to a steady-state than typical exponential 
models (Fig. 1 ), with scaling exponent H ( H < 0 ) and a 
corresponding impulse SCRF:

so that the impulse CRF is a also a truncated power law.
Rypdal (2012) already proposed a similar CRF with 

H > 0 , which has the advantage of not needing the 

(12)G𝛩(t) =

{
1 −

(
1 +

t

𝜏

)H

when t ≥ 0

0 when t < 0

(13)G𝛿(t) =

{
−

H

𝜏

(
1 +

t

𝜏

)H−1

when t ≥ 0

0 when t < 0

truncation � at small time scales. This allows the modelling 
of the high-frequency with the same scaling by the simple 
addition of a random white noise forcing to the determinis-
tic forcing. This came at the expense of divergence at large 
time scales, the runaway Green’s function effect (Hébert and 
Lovejoy 2015), since any finite increase in forcing would 
lead to an ever increasing temperature response, i.e. an infi-
nite ECS. An interesting alternative to model high- and low-
frequency regimes with scaling regimes can be obtained by 
the fractional generalization of the energy-balance equation, 
leading to a CRF with a similar (convergent) low-frequency 
behaviour as the SCRF (Procyk et al. 2020).

It is straightforward to analytically calculate the expected 
temperature increase using the truncated SCRF in Eq. 13 in 
response to specific forcing scenario such as to recover TCR 
and ECS (See Appendix A for details). With the same forc-
ing scenario as ECS, we also define ECS500 as the expected 
temperature 500 years after the CO2 doubling rather than at 
infinity. This is a more relevant ECS measure from a human 
perspective and helps to illustrate the contribution to the 
ECS of the very long-memory beyond 500 years. The ratio 
of TCR to ECS (Eq. A10) changes from unity for H → −∞ 
to zero for H ≥ 0 where ECS diverges while TCR remains 
finite; conversely, the fraction of warming left between 500 
years and infinity ( (ECS − ECS500)ECS

−1 ) goes from zero 
to unity when H goes from negative infinity to zero and 
greater (Fig. 2).

2.3 � Data

2.3.1 � Radiative forcing data

In this paper, we consider three sources of external forcing: 
solar and volcanic which are natural, and anthropogenic 
forcing which involves several forcing agents produced 

Fig. 1   A nondimensional comparison of the step SCRF (Eq. 12, red) 
with the classical two-box exponential step CRF (Eq.  8, blue). The 
nondimensional (step) forcing (black) is also shown, and the dif-
ference between this forcing and the response is the rate of energy 
storage. The parameters for the two-box exponential are the best esti-
mates from Geoffroy et al. (2013): �fast = 4.1 years , �slow = 249 years , 
C = 7.3 year Wm−2K−1 and C0 = 106 year Wm−2K−1 while for the 
SCRF we use � = 2 years and show the curves for different H values 
indicated on the graph

Fig. 2   The analytical ratio between TCR and ECS is shown as 
a function of the scaling exponent H for a high frequency cutoff 
� = 2 years . The ratio of TCR to ECS500 is also shown for equilibrium 
defined at 500 years (black) along with the true equilibrium at infinity 
(blue) and the leftover warming fraction (red) between 500 years and 
infinity
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by humans. The forcing is usually expressed in W m−2 ; 
however the climate sensitivity is commonly measured in 
K per doubling of CO2 . Therefore, it is convenient to also 
define forcing as a fraction of the forcing imparted by a 
doubling of CO2 concentration: �F2× CO2

 . The generally 
accepted (approximate) carbon dioxide concentration to 
forcing relationship is:

where F CO2
 is the forcing due to carbon dioxide, � is the car-

bon dioxide concentration and �0 is its pre-industrial value 
which we take to be 277 ppm . Therefore,

a) Greenhouse Gas Forcing
Anthropogenic influences on the climate have been rec-

ognized as the main driver of the global warming charac-
teristic of the last century, and the related forcing is mostly 
due to historical changes in atmospheric composition. 
Future anthropogenic forcing is prescribed in four scenar-
ios, the Representative Concentration Pathways (RCPs), 
established by the IPCC for CMIP5 simulations : RCP 2.6, 
RCP 4.5, RCP 6.0 and RCP 8.5 (Meinshausen et al. 2011), 
shown in Fig. 3. They are named according to the total 
radiative forcing in Wm−2 expected in the year 2100 and 
are motivated by complex economic projections, expected 
technological developments, and political decisions. The 
scenarios allow us to verify and compare results from our 
observations-based SCRF model with CMIP5 simulations. 
Generally, RCP 6.0 was left out of the analysis since fewer 
CMIP5 modeling groups performed the associated runs.

(14)F CO2
(�) = 3.71 W m−2 log2

�

�0

(15)�F2× CO2
= F CO2

(2�0) = 3.71 W m−2

The measure of anthropogenic forcing FAnt used in 
this paper is the carbon dioxide equivalent FCO2EQ

 series 
given in the RCP scenarios. It corresponds to the com-
bined effective radiative forcing produced by Long Lived 
Greenhouse Gases (GHG) FGHG : carbon dioxide, methane, 
nitrous oxide and fluorinated gases, controlled under the 

Table 1   Summary of the effective radiative forcing increase from 1750 to 2005 for different anthropogenic sources as reported in the IPCC AR5

Given are the median, the upper 5% bound and the lower 5% bound in units of �F2× CO2

Forcing sources considered Lower 5% Median Upper 5%

CO2 0.40 0.45 0.50
All GHG 0.64 0.71 0.78
Aerosol direct effects −0.24 −0.13 −0.02
Aerosol indirect effects −0.49 −0.19 −0.08
Total anthropogenic forcing 0.21 0.43 0.55

Forcing sources neglected Lower 5% Median Upper 5%

Tropospheric ozone 0.06 0.11 0.16
Stratospheric ozone −0.04 −0.01 0.02
Stratospheric water vapour from NH4 0.01 0.02 0.03
Land use changes −0.07 −0.04 −0.01
Surface albedo from black carbon 0.00 0.03 0.06
Contrails 0.002 0.003 0.11

Fig. 3   (top) The anthropogenic aerosol forcing series used, FAerRCP
 

(blue) and FAerQa
 (black), are shown over the historical period and 

over the projection period until 2100 for RCP 2.6 (solid), RCP 4.5 
(dashed), and RCP 8.5 (dotted); FAerQa

 was extended with the FAerRCP
 

series. (bottom) The greenhouse gas forcing series FGHG (blue) and 
the total anthropogenic forcing series, adding FAerRCP

 (black) or FAerQa
 

(red) to FGHG , are shown over the historical period and projection 
period for the 3 RCP scenarios considered, as above
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Kyoto protocol, ozone depleting substances, controlled 
under the Montreal Protocol, and aerosols.

Chapter 8 of the IPCC AR5 reports the increase from 
1750 to 2005 of effective radiative forcings with a very 
likely (90%) confidence interval (CI); we summarized 
them in Table 1 to evaluate the relative uncertainty of the 
different anthropogenic forcing agents. Note that we will 
report likely and very likely (symmetrical) CI at the 66% 
and 90% confidence level, respectively, throughout this 
work (i.e. ±1 and ±1.645 standard deviations respectively), 
in accordance with the IPCC. The largest forcing increase 
stems from GHG, in particular carbon dioxide, and it has 
a relatively small uncertainty.

b) Aerosol forcing There are also negative contributions 
to anthropogenic forcing from aerosols’ direct effect and 
indirect cloud albedo effects, both with very high relative 
uncertainties. The total anthropogenic change in effective 
radiative forcing is certainly positive, due to the strong 
GHG forcing, but the large uncertainty on aerosol forc-
ing strongly dominates the total uncertainty. We therefore 
introduce the aerosol linear scaling factor � as an extra 
parameter to scale aerosol forcing (see Eq. 21 below).

The aerosol forcing in the RCP files FAerRCP
 is given 

implicitly; it can be obtained by subtracting the combined 
effective radiative forcing from gases controlled under the 
Kyoto protocol, FKyt , and from those controlled under the 
Montreal protocol, FMtl (Fig. 3) from the CO2EQ forcing. 
FMtl is given in CFC-12 equivalent concentration and we 
use the relation from Ramaswamy et al. (2001) to convert 
back to W m−2.

The very likely CI given for the modern value, 
defined in 2005, of total aerosol forcing in the IPCC 
AR5 is  [−1.9,−0.1] W m−2  ,  but  Stevens (2015) 
(S15) demonstrates that a forcing more negative than 
−1 W m−2 is implausible and suggests, combined with 
results from Murphy et al. (2009) tightening the upper 
bound to −0.3 W m−2 , that the interval be revised to 
[−1.0,−0.3] W m−2.

S15 proposes a three parameter model to derive the 
aerosol direct and indirect forcing directly from anthro-
pogenic sulfur dioxide emissions Qa :

where Qa is the annual anthropogenic sulfur dioxide emis-
sions, � is the direct effect coefficient, � is the indirect effect 
coefficient and Q̄n is the mean natural sulfur dioxide atmos-
pheric source strength. For a given set of parameters, we can 
obtain a forcing series which is highly correlated (r = 0.95) 
with FAerRCP

 , and also with Qa (r = −0.996 ) itself since the 
log term is approximately linear near Q̄n . Therefore, we also 
include in the analysis an alternate aerosol forcing series for 

(16)FAerQa
= 𝛾Qa + 𝛽 log

Qa

Q̄n

comparison which takes Qa as a linear surrogate for the total 
aerosol forcing such that :

where the coefficient �∗ is taken to be equal to 
−9.3 × 10−6 W m−2Tg−1yr so that the modern (2005) value 
of FAerQa

 and FAerRCP
 are both about −1.0 W m−2 . This 

method allows us to derive an aerosol forcing series (Fig. 3) 
directly from sulfur dioxide emission data that does not rely 
on GCMs. We decided to present as the main result esti-
mates made using FAerRCP given it is based on a more 
accepted aerosol forcing series closer to that used in the 
MME we use for comparison, and results based on FAerQa 
are presented alongside to show the imporant downward 
impact on all warming metrics that would result if it were 
shown to be a more reliable indication of aerosol forcing.

c) Neglected anthropogenic forcing
Left out from our analysis are other sources of anthro-

pogenic forcing for which only the direct radiative forcing 
increase is reported in AR5: tropospheric ozone, strato-
spheric ozone, statospheric water vapour from CH4 , surface 
albedo from land use changes, surface albedo from black 
carbon aerosol on snow and ice and contrails. They were 
neglected given the uncertainty on the shape of the response 
and their small combined impact. Their total should be posi-
tive and therefore, the median estimates of sensitivity pre-
sented in this paper will possibly be biased high by a small 
amount.

d) Solar forcing
The two main natural forcings are solar and volcanic, but 

others include natural aerosols such as mineral dust and sea 
salt which will not be considered as they are not externally 
forced and depend on the internal variability of the system.

We use the recommended solar forcing FS for CMIP5 
experiments shown in Fig.  4 (along with the volcanic 

(17)FAerQa
≈ �∗Qa

Fig. 4   Volcanic forcing FV1
 (blue) is shown alongside two damped 

versions. The black one is linearly damped by a constant 0.5 coeffi-
cient while the red one, FV0.6

 , is damped using Eq. 18 with � = 0.6 . 
The solar forcing FS (orange) has been shifted down by −1.5 and 
amplified by a factor of 10 for clarity
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forcing). It is reconstructed by regressing sunspot and facu-
lae time series with total solar irradiance (TSI) (Wang et al. 
2005). To obtain the solar perturbation to radiative forcing, 
the TSI is divided by 4 due to the spherical geometry of 
the Earth, multiplied by the average co-albedo of the Earth 
(about 0.7) and the average value of the two 11-year solar 
cycles from 1882 to 1904 is removed to obtain an anomaly. 
For the future, we take the solar cycle 23 (the last one before 
2008) and reproduce it to extend the series as was recom-
mended for the CMIP5 experiments.

e) Volcanic forcing
Contrary to other forcings, there was no standard vol-

canic forcing series prescribed for CMIP5 experiments. The 
volcanic forcing FV used here was derived from the optical 
depth �V using the approximate relation FV ≈ −27 W m−2�V 
for instantaneous forcing. The series for �V and the rela-
tion to forcing were obtained from the Goddard Institute for 
Space Science (GISS) website (Sato 2012). The volcanic 
forcing covers the period from 1850 to 2012 and it was kept 
null for its extension into the future as was prescribed for 
CMIP5 experiments. We extend it back to 1765 using the 
optical depth reconstruction of Crowley et al. (2008). To 
obtain the radiative forcing, the series was multiplied by a 
factor of −24 W m−2 so that the total forcing following the 
Pinatubo eruption from 1991 to 1996 is equal to the Sato 
(2012) dataset over the same period.

The response to volcanic forcing is crucial in improving 
the estimation of parameters, especially the scaling expo-
nent H, as it provides insight into the climate system on fast 
timescales (inter-annual); within this scaling model, there 
is no characteristic scale and it has implications for longer 
timescales. Volcanic forcing is peculiar as it is strong and 
highly intermittent. The intermittency can be quantified by 
the parameter C1 which corresponds to the fractal codimen-
sion (i.e. 1 minus the fractal dimension) characterizing the 
sparseness of volcanic “spikes” of mean amplitude (see 
Lovejoy and Schertzer 2013b; Lovejoy and Varotsos 2016), 
with large eruptions producing negative forcing spikes of 
magnitude greater than �F2× CO2

 ; on the other hand, the 
instantaneous temperature response is weaker than expected 
using linear response theory.

It was found that even though volcanic forcing dwindles 
away quickly, it has noticeable effects on the climate at dec-
adal timescales and longer by sharply reducing the ocean 
heat intake (Church et al. 2005; Stenchikov et al. 2009). 
This, in fact, corresponds to the physical mechanism behind 
the long-range memory to forcing in the linear response 
framework, and it acts to reduce the instantaneous impact 
of the volcanic forcing. Gregory et al. (2016) found that 
this reduction in ocean heat intake explains most of the dis-
crepancy between forcing and response, but also added that 
“the magnitude of the volcanic forcing [...] may be smaller 
in AOGCMs (by 30 % for the HadCM3 AOGCM) than in 

off-line calculations that do not account for rapid cloud 
adjustment”.

The volcanic response appears to be non-linear as the 
intermittency (“spikiness”, sparseness of the spikes) param-
eter C1 changes from about C1FV

≈ 0.2 for the input volcanic 
forcing to C1T ≲ 0.1 for the temperature response :the latter 
is therefore much less intermittent than the former. Theo-
retically, a linear response model with a power-law Green’s 
function cannot alter the intermittency parameter, although 
these estimates are sensitive to finite size effects and internal 
variability (Lovejoy and Varotsos 2016).

Since the volcanic forcing is too strong and too intermit-
tent, using it within the SCRF framework requires the use 
of an effective volcanic forcing series if we are to use it 
in the linear response framework. The following theoreti-
cally motivated non-linear relation damps the amplitude of 
the volcanic forcing while also reducing its intermittency 
parameter :

where FV�
 is the damped effective volcanic forcing, � is the 

damping exponent and < FV > is the mean FV . The damping 
exponent required to reduce the intermittency parameter of 
the volcanic temperature response, C1TV

 , can be theoretically 
calculated using the relation :

where �MF is the multifractality index of the volcanic forcing 
(e.g. Lovejoy and Schertzer 2013b). For �MF ≈ 1.6 , we find 
𝜈 ≲ 0.65 . This calculation might underestimate � , because 
the temperature variability also includes the response to the 
less intermittent forcing (anthropogenic and solar) as well as 
the internal variability, which is quasi-Gaussian with C1 ≈ 0 . 
Given the difficulty in estimating C1 and �MF to calculate � , 
we introduce � as a free parameter and estimate it directly.

Another avenue would be to simply introduce a linear 
scaling factor to reduce the amplitude of the volcanic forc-
ing, but this would not change the nondimensional spikiness. 
The two methods are approximately equal for medium size 
eruptions, but strong peaks get reduced further in the non-
linear damping case (see Fig. 4). From the point of view of 
maximizing the variance explained by the forced response 
in the temperature record, the linear damping method would 
produce very similar result, but we choose the non-linear 
damping method simply because it is better justified theo-
retically and decreases the intermittency parameter C1.

2.3.2 � Surface air temperature data and cmip5 simulations

Our analysis was performed on 5 observational records of 
surface air temperature each spanning at least the period 

(18)
FV𝜈

< FV >
=

[
FV

< FV >

]𝜈

(19)C1FV
��MF = C1TV
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1880–2014: HadCRUT4 (Morice et al. 2011), the Cowtan 
and Way reconstruction version 2.0 (C and W) (Cowtan 
and Way 2014), GISS Surface Temperature Analysis (GIS-
TEMP) (Hansen et al. 2010; GISTEMP Team 2015), NOAA 
Merged Land Ocean Global Surface Temperature Analysis 
Dataset (NOAAGlobalTemp, formerly known as MLOST) 
(Smith et al. 2008) and Berkeley Earth Surface Temperature 
(BEST) (Rohde et al. 2013).

The HadCRUT4 dataset is a combination of the sea-
surface temperature records compiled by the Hadley Centre 
of the UK Met Office with the land surface air tempera-
ture records compiled by the Climate Research Unit in East 
Anglia; the C and W dataset uses HadCRUTv4 as raw data, 
but aims to address coverage bias by infilling missing data 
by kriging; the dataset with land air temperature anomalies 
interpolated over sea-ice was used. GISTEMP is produced 
by the Goddard Institute for Space Studies by combining 
the Global Historical Climate Network version 3 (GHCNv3) 
land surface air temperature records with the Extended 
Reconstructed Sea Surface Temperature version 4 (ERSST) 
and the temperature dataset from the Scientific Community 
on Antarctic Research (SCAR). NOAA National Climatic 
Data Center also uses GHCNv3 and ERSST, but with dif-
ferent quality controls and bias adjustements. BEST uses its 
own land surface air temperature product combined with a 
modified version of HadSST.

The CMIP5 models used are presented in Table 2. The 32 
selected GCMs have historical simulation outputs available 
for the period from 1860 to 2005 and outputs of scenario 
runs over 2005–2100 for RCP 2.6, RCP 4.5 and RCP 8.5.

2.4 � Parameter estimation

We have now presented the SCRF and we need to establish 
a procedure to estimate its parameters s , � , and H as well as 
the forcing parameters � and � . To achieve this, we relate 
the temperature and forcing data introduced above through 
the SCRF in a multi-parameter Bayesian estimation scheme.

The radiative forcing data is used to produce a theoretical 
forced temperature response by means of convolution with 
the SCRF. The convolution was implemented numerically 
as a discrete sum :

where �TF is the forced temperature response, H is the scal-
ing exponent, s is the sensitivity to integrated radiative forc-
ing, � is the high-frequency cutoff and F(ti) is the annual 
forcing series F(t) linearly interpolated to a resolution such 
that �t� = t�i+1 − t�i = 0.05 year ; this resolution is much 
smaller than � ≈ 2 years (see below) and it was found to be 
sufficient to produce a temperature response with negligible 

(20)�TForced(t) = −s
H

�

N∑
i=1

(
t + � − t�i

�

)H−1

F(t�i)�t
�

error compared to the analytic response for different poly-
nomial forcing scenarios while remaining computationally 
efficient.

Due to the assumption of linearity, the forcing series used 
can be written as the sum of the constituent forcings :

This includes the two extra parameters discussed earlier: the 
aerosol linear scaling factor � and the volcanic non-linear 
damping exponent � . This allows us to take into account the 
uncertainty on the forcing when estimating model param-
eters; the uncertainties on FGHG and FS are thus neglected, 
because they are overwhelmed by the uncertainty on FAer . 
The uncertainties add in quadrature and therefore, if we leave 
out the uncertainty on FGHGwhen adding to the uncertainties 
of the forcing from the aerosol direct and indirect effects, we 
only underestimate the total uncertainty (at the 90% confi-
dence level) by about 0.01�F2× CO2

 (using the errors given in 
Table 1 for the total change over the 1750–2005 period). The 
amplitude of FV is sensitive to � and its parameter spread is 
informative of the related uncertainty in the volcanic forcing.

All the series used for parameter estimation were adjusted 
to the same anomaly level so that their mean values were zero 
over the reference period of 1880–1910. There are thus five 
parameters to determine. A time-dependent forced response 
�TForced(s,H, �, �, �;t) is calculated for each parameter com-
bination and removed from the temperature series to obtain a 
series of residuals which represent an estimator �̂TInternal of 
the historical internal variability.

where �TObs is an observational temperature dataset. This 
allows us to calculate the likelihood function L to be maxi-
mized which corresponds to the probability Pr of the inter-
nal variability to follow our assumed error model :

The error model we use is a fractional Gaussian noise (fGn) 
with zero mean (see Lovejoy et al. 2015, 2017), and there-
fore the residuals are not independently distributed. This 
model approximates well the scale dependence of the inter-
nal variability, and so even if it is misspecified, it will be 
superior to non-parametric approaches (Poppick et al. 2017; 
Lovejoy et al. 2016).

Using Bayes’ rule, we can derive a probability distribution 
function (PDF) for the parameters of interest:

(21)F(t) = FGHG(t) + �FAer(t) + FS(t) + FV�

(22)
�̂TInternal(s,H, �, �, �;t|�TObs) = �TObs(t) − �TForced(s,H, �, �, �;t)

(23)L(s,H, �, �, �|�TObs) = Pr(�TObs|s,H, �, �, �)

(24)

Pr(s,H, �, �, �|�TObs) =
Pr(�TObs|s,H, �, �, �)�(s,H, �, �, �)

Pr(�TObs)
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where �(s,H, �, �, �) corresponds to the prior distribution 
for the parameters.

The prior distribution for the high-frequency cutoff � is 
taken to be a Dirac-delta at 2 years. From the point of view 
of the parameter estimation, this choice has a marginal effect 
on the results since it is the ratio of H to � which is most 
determinant for sensitivity estimates at equilibrium, and H 
is allowed to vary. This weak assumption makes the estima-
tion procedure more manageable by reducing the number of 
free parameters to four : H, s , � and � . See Appendix B for 
a detailed discussion concerning this choice of � , and the 
sensitivity of the result to this choice.

Given no previous knowledge of s and � , we simply 
assume a non-informative uniform prior over the range of 
parameters considered. We know that the scaling exponent 
H should be negative since the ECS would diverge if H ≥ 0 , 
and therefore, we need a prior in H which discards such non-
physical values. For each value of H, there is a unique TCR 
to ECS ratio which can be calculated (shown on Fig. 2). 
We make use of this fact to derive a prior in H based on the 
TCR to ECS ratios from an ensemble of 23 CMIP5 GCMs 
(Yoshimori et al. 2016). In order to minimize the impact of 
this choice, we take a wide uniform distribution covering 
the mean ratio plus or minus 4 times the standard deviation, 

Table 2   CMIP5 models used are presented here along with the modeling centres which produced them

The superscript number in paranthesis identifies the GCMs for later references

Modeling Center (or Group) Institute ID Model Name

Beijing Climate Center, China Meteorological Administration BCC BCC-CSM1.1 (1)

BCC-CSM1.1(m) (2)

College of Global Change and Earth System Science, Beijing Normal University GCESS BNU-ESM (3)

Canadian Centre for Climate Modelling and Analysis CCCMA CanESM2 (4)

National Center for Atmospheric Research NCAR​ CCSM4 (5)

Community Earth System Model Contributors NSF-DOE-NCAR​ CESM1(CAM5) (6)

Centre National de Recherches Météorologiques / Centre Europen de Recherche et For-
mation Avance en Calcul Scientifique

CNRM-CERFACS CNRM-CM5 (7)

Commonwealth Scientific and Industrial Research Organization in collaboration with 
Queensland Climate Change Centre of Excellence

CSIRO-QCCCE CSIRO-Mk3.6.0 (8)

EC-EARTH consortium EC-EARTH EC-EARTH (9)

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, 
Tsinghua University

LASG-CESS FGOALS-g2 (10)

The First Institute of Oceanography, SOA, China FIO FIO-ESM (11)

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3 (12)

GFDL-ESM2G (13)

GFDL-ESM2M (14)

NASA Goddard Institute for Space Studies NASA GISS GISS-E2-H (p1(15) , p2(16) , p3(17))
GISS-E2-R (p1(18) , p2(19) , p3(20))

National Institute of Meteorological Research/Korea Meteorological Administration NIMR/KMA HadGEM2-AO (21)

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by Instituto 
Nacional de Pesquisas Espaciais)

MOHC (and INPE) HadGEM2-ES (22)

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR (23)

IPSL-CM5A-MR (24)

Japan Agency for Marine-Earth Science and Technology, MIROC MIROC-ESM (25)

Atmosphere and Ocean Research Institute (The University of Tokyo), and National 
Institute for Environmental Studies

MIROC-ESM-CHEM (26)

Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute 
for Environmental Studies, and Japan Agency for Marine-Earth Science and Technol-
ogy

MIROC MIROC5 (27)

Max-Planck-Institut für Meteorologie MPI-M MPI-ESM-MR (28)

(Max Planck Institute for Meteorology) MPI-ESM-LR (29)

Meteorological Research Institute MRI MRI-CGCM3 (30)

Norwegian Climate Centre NCC NorESM1-M (31)

NorESM1-ME (32)
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i.e. between 0.22 and 0.91, which yields a corresponding 
uniform distribution in H between −1.1 and −0.1 . Regard-
ing � , we take as the prior distribution a normal distribution 
N(1.00, 0.55) which has a 90% CI coherent with the mod-
ern value for FAer from the IPPC AR5, [−1.9,−0.1] W m−2 , 
since the modern value of FAer ≈ −1.0 W m−2 in the series 
we used. The efficacy of the parameter estimation method is 
tested on synthetic temperature series in Appendix C.

3 � Results

3.1 � Scaling climate response function

In this section, using Bayes’ theorem as described above, we 
derived a PDF for the parameters of the SCRF from the 
mean likelihood of the five observational datasets available: 
HadCRUTv4, C&W, GISTEMP, NOAAGlobalTemp and 
BEST. Two different series were used for the aerosol forcing 
in equation 21: FAerRCP

 and FAerQa
 , and the results are com-

pared. Estimates and CIs are rounded to the resolution used 
for the likelihood function of the variable.

The PDF for the aerosol linear scaling factor � , using 
FAerRCP

 (Fig. 5: bottom left, solid line), yields a 90% CI of 
[0.1, 1.3] with median at 0.8; for comparison, a uniform 
prior in � , and a prior consistent with S15, would yield the 
median values of 0.6 and 0.7 with CIs of [0.2, 1.2], and 
[0.4, 0.9] respectively; the posterior result is therefore not 
sensitive to the prior assumption. Given that in 2005 
FAerRCP

≈ −1 W m−2 , the negative value of � translates into 
confidence intervals for the modern aerosol forcing. It is 

interesting to note that we recovered a 90% CI close to what 
had been argued by S15, namely [−1.0,−0.3] W m−2 , thus 
reinforcing his claim to decrease the uncertainty on aerosol 
forcing using a completely independent approach, although 
more comprehensive estimates still support the wider range 
from the IPCC’s AR5 (Bellouin et al. 2020). On the other 
hand, the result using FAerQa

 supports a significantly weaker 
(better constrained) aerosol forcing with an � median value 
at 0.2 and a 90% of [−0.2, 0.6] (Fig. 5: bottom left, dashed). 
The sulfur dioxide emission series Qa , and therefore FAerQa

 , 
shows a sharp increase between 1950 and 1980, sharper than 
FAerRCP . Meanwhile, the global mean temperature only 
decreases marginally and therefore, � for FAerQa

 needs to be 
smaller for a good agreement.

The volcanic damping exponent � was found (when using 
FAerRCP

 ) to have a 90% CI of [0.25, 0.85] with median value 
at 0.55 (Fig. 5: bottom right, solid line) and using FAerQa

 
yielded a slightly higher median � of 0.60 with a 90% CI of 
[0.30, 0.90] (Fig. 5: bottom right, dashed line). The datasets 
which tend towards a lower � (i.e. smoother volcanic forc-
ing), namely NOAAGlobalTemp and GISTEMP, are also 
those with stronger statio-temporal filtering, and therefore, 
a smoother volcanic response. These results confirm that 
volcanic forcing is generally overpowered since � = 1 has 
practically null probability in both cases. This means that 
using the original volcanic forcing series described above 
without the non-linear damping does not reproduce well, 
within the SCRF model presented, the cooling events 
observed in the instrumental records following eruptions: 
the cooling would be too strong. It also shows that the vol-
canic contribution is essential since � values near zero, 

Fig. 5   For each observational 
dataset and also their average, 
PDFs are shown for the scal-
ing exponent H (top left), the 
equilibrium climate sensitivity 
s in K per doubling of CO2 (top 
right), the volcanic damping 
exponent � (bottom right), and 
the aerosol linear scaling factor 
� (bottom left); for each case the 
probabilities over the remain-
ing parameters were integrated 
out. Shown alongside are the 
corresponding PDFs for the 
parameter estimation based on 
both FAerRCP (solid) and FAerQa

 
(dashed). The average PDFs 
(purple) from the five observa-
tional datasets are shown after 
the prior distribution has been 
applied; the one using FAerRCP 
is shown as the main result with 
shading and darker 5% tails
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which effectively corresponds to a constant (weak) mean 
volcanic forcing, are also ruled out. We also obtain from 
Eq. 19, taking �MF ≈ 1.6 and C1FV

≈ 0.2 , that the intermit-
tency parameter C1 of the effective volcanic forcing, and also 
the linear volcanic temperature response, is C1TV

= 0.07+0.08
−0.05

 
at the 90% confidence level for the FAerRCP

 result, and 
C1TV

= 0.09+0.07
−0.06

 for the FAerQa
 result.

The most crucial parameter in our model is its scaling 
exponent H which is the main determinant for ECS estimates 
made later. We found, when using FAerRCP

 , a 90% CI of 
[−1.0,−0.1] , with median value at −0.5 (Fig. 5: top left, solid 
line). Using FAerQa

 did not significantly change the median 
estimate of H and the 90% CI (Fig. 5: top left, dashed line). 
The purpose of H is somewhat similar to that of an ocean 
diffusivity parameter in a one-dimensional SCM and we see 
that in fact, the datasets using HadSST: HadCRUTv4, C&W 
and BEST, yielded PDFs closer to each others than to those 
using ERSST: NOAAGlobalTemp and GISTEMP.

We can therefore identify and separate the anthropogenic 
and natural components of the forced variability, �TAnthro 
and �Tnatural respectively, from the observational tempera-
ture series �TObs to obtain the internal variability �TInternal , 
see Fig. 6.

�TAnthro and �TNatural are obtained by the convolution of the 
associated forcing with the SCRF; solar and volcanic forc-
ing in the case of �TNatural , and greenhouse gases and aero-
sol forcing in the case of �TAnthro . Our result confirms that 
much of the 20th century warming is indeed human-induced, 
while much of the decadal scale variability can be attributed 
to natural forcing, and internal processes. In the projection 
period, after 2015, �TNatural brings a positive contribution to 
the temperature anomaly since the prescribed solar forcing 
is a repetition of the anomalously high solar cycle 23. In 
reality, the natural forcing for the future will be quite differ-
ent than those prescribed here for conformity with CMIP5 
experiments.

3.2 � Climate sensitivity

The paleoclimate record has been used to estimate a likely 
range for ECS (equivalent to our parameter s) by compar-
ing the temperature and forcing changes over past periods 
such as the last millennium (Hegerl et al. 2006: [1.9, 4.3] 
K) and the last glacial maximum (LGM) (Schmittner et al. 
2011:[1.4, 3.5] K; von der Heydt et al. 2014: [2.0, 2.6] K) 
There is evidence that the climate sensitivity depends on 
the mean climate state and therefore the modern ECS does 
not necessarily correspond to past ECS (Crucifix 2006; 
Yoshimori et al. 2011). In fact, there are many methodo-
logical challenges in order to fairly compare those different 

(25)
�TInternal(t) = �TObs(t) − �TAnthro(�,H, �, �, t) − �TNatural(H, �, �, �, t)

estimates, and in their extensive review on the subject, 
PALEOSENS Project Members (2012) considered 21 dif-
ferent paleoclimate studies in order to derive a [2.2, 4.8] 
K likely range for ECS.

An alternative approach developed to obtain ECS from 
the instrumental period are one-dimensional simple climate 
models (SCMs) with few parameters, among which the 
ECS is specified rather than being measured as an emergent 
property. The outputs of SCMs are then evaluated against 
the observational record, usually within a Bayesian frame-
work, to find the best parameter combination and derive a 
range for the ECS : [2.1, 7.1] K (Meinshausen et al. 2009), 
[1.2, 3.5] K (Aldrin et al. 2012), [1.5, 5.2] K (Bodman 
et al. 2013), [0.9, 3.2] K (Skeie et al. 2014) and [1.9, 3.3] 
K (Johansson et al. 2015). See Bodman and Jones (2016) 
for a thorough review of this approach.

Recently, Sherwood et al. (2020) have conducted a com-
prehensive studies of all those lines of evidence and con-
cluded that an ECS below 2 K was hard to reconcile with 
feedback-, historial- and paleoclimate-based estimates, while 
estimates paleoclimate-based estimates provide the strong-
est evidence against an ECS above 4.5 K. Their Bayesian 

Fig. 6   (top) The mean observational temperature series �Tobs (green 
and shifted up by 0.5 K) has �TNatural removed and the residual 
�TObs − �TNatural (red) is compared with �TAnthro (black) calculated 
using FAerRCP

 ; they are highly correlated (r=0.94). (bottom) �TAnthro 
is removed from �TObs and the residual �TObs − �TAnthro (orange) is 
compared with �TNatural (blue); the are correlated with r = 0.51. Once 
�TNatural is also removed, we obtain �TInternal (green and shifted up by 
0.5 K), which is thus uncorrelated with �TNatural . The error (shaded) 
given for each curve correponds to the 90% CI derived from the esti-
mated parameters, except in the case of the observational data where 
it correponds to the spread between the datasets (1.645 standard devi-
ation, by analogy with a 90% CI)
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analysis yielded a likely range for ECS of [2.6, 3.8] K, with 
3.1 K at median, and a very like range [2.3, 4.7] K.

Similarly to SCMs, with probabilistic estimates of our 
model parameters it is straightforward to calculate the asso-
ciated temperature response to any forcing scenario; this 
allows us to derive PDFs for common measures of climate 
sensitvity: TCR and ECS. In addition, we define ECS500 as 
the temperature change 500 years after a step-function dou-
bling in carbon dioxide concentration instead of at infinity.

Using Eq. A9 for each parameter combination with the 
associated probability assigned, we derived the PDFs for 
TCR shown in Fig. 7 using a uniform prior in TCR. Our 
result is slightly lower and better constrained than the one 
given in the IPCC AR5: a [1.0, 2.5] K likely range with best 
value at around 1.8 K. Using FAerRCP

 , we found a median 
TCR of 1.7 K with a likely range of [1.4, 2.0] K, and when 
using FAerQa

 the median is revised downward to 1.3 K with 
an even slimmer likely range of [1.1,1.5] K.

The PDFs for ECS (Fig. 8) are calculated with a uniform 
prior distribution in ECS and a likely range subset of the 
corresponding IPCC AR5 likely range of [1.5,4.5] K was 

found. Using FAerRCP , the ECS PDF found is skewed towards 
higher ECS with a likely range of [1.8,3.7] K with its median 
at 2.3 K. The result for FAerQa

 yields a likely range of 
[1.5,2.7] K with its median at 1.8 K. Both results are coher-
ent with the IPCC AR5 likely range, albeit on its lower side. 
A large fraction of the expected warming for the models with 
very high ECS only occurs at long timescale as a conse-
quence of the slow convergence time when H → 0− . This is 
obvious when considering ECS500 , calculated with Eq. A5, 
for we obtain more symmetrical distributions than for ECS: 
a likely range of [1.7, 2.8] K with its median at 2.2 K for 
FAerRCP , and a likely range of [1.5, 2.1] K with its median at 
1.7 K. The median ECS we found when using FAerRCP

 , which 
is derived from GCM experiments, is 0.6 K higher than 
when using FAerQa

 which is entirely based on historical obser-
vations. The latter is close to other observation-based esti-
mates with low-ECS (Ring et al. 2012; Skeie et al. 2014) 
while the former is closer to high-ECS observation-based 
estimates (Meinshausen et al. 2009; Bodman et al. 2013; 
Otto et al. 2013; Johansson et al. 2015) as well as that of 
Sherwood et al. (2020), but both are lower than the 3 K best 
value reported in AR5 which is very close to CMIP3 and 
CMIP5 GCMs based estimates. All the ECS results are sum-
marized in Table 3

3.3 � Projections to 2100

Using Eq. 20, we are now able to use the SCRF to recon-
struct the forced temperature variability over the histori-
cal period and make projections for the coming century 
according to the RCP scenarios. We compare these purely 
observations-based projections with those from the CMIP5 
MME considered (32 GCMs). The CI given for the MME 
correspond to the spread between the different GCMs, i.e., 
the structural uncertainty, since a full probabilistic character-
ization of uncertainty is generally not possible with GCMs 
given the hundreds of degrees of freedom involved. In addi-
tion, we also show the SCRF projections after recalibrat-
ing the sensitivity coefficienct s on the historical part of the 
MME, thus confirming that its forced response is also linear 
and that the memory in the MME projections is close to that 
of the SCRF. Furthermore, the ability of the SCRF method 
was shown for the majority of individual CMIP5 models 
by calibrating parameters over the low-emission scenario 
RCP 2.6 and projecting the medium- and high-emission sce-
narios, RCP 4.5 and RCP 8.5 (Hébert 2017).

Over the 1860–2000 period, the reconstructed forced tem-
perature variability produced by the SCRF, whether using 
FAerRCP or FAerQa

 , and the mean of the CMIP5 MME track 
each other closely (Fig. 9, top left). There is only a small 
gap between the two over the 1915–1960 period when the 
CMIP5 MME is consistently warmer, but generally by less 

Fig. 7   The PDF for TCR is calculated using FAerRCP
 (solid) and FAerQa

 
(dashed). The associated likely intervals (66%) (bars under the axis) 
are tighter than the IPCC likely range (gray shading) with lower 
median

Fig. 8   Same as Fig. 7, but for ECS (blue) and ECS500 (black)
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than 0.05 K. The variations of the instrumental data around 
the mean forced components, i.e. the internal variability, are 
greater in the first half of the 20th century than in the sec-
ond. Between 1905 and 1935, the internal variability shows 
a prolonged negative fluctuation under the mean forced 
variability, and then a large positive fluctuation until 1945. 
Subsequently and until 2015, the departures from the mean 
are less persistent.

After 2000, the SCRF reconstruction accurately fol-
lows the so-called hiatus while the CMIP5 MME over-
shoots. This was also shown by Lovejoy (2015) with a 
simple Dirac CRF and an effective sensitivity to CO2 . 
In Schmidt et  al. (2014), the overshoot of the CMIP5 
MME is attributed to a combination of conspiring factors, 

mainly errors in volcanic and solar input, in representa-
tion of aerosols and in the evolution of El-Niño. In fact, 
an impulse-response model, similar to what we are using 
here, is used by Schmidt et al. (2014) to accurately retro-
adjust the CMIP5 projection ensemble. We did not inves-
tigate the effect of those adjustments on the CMIP5 MME 
for future projections and simply considered the original 
GCM results.

The low-emission scenario, RCP 2.6, is of particular 
interest since the dominant anthropogenic forcing starts 
decreasing around the mid-2040s and allows us to observe 
the “warming in the pipeline” (Hansen et al. 2011) due to 
the large thermal inertia of oceans, which is modeled here 
by the long-range memory to radiative forcing of the 
SCRF. This means that the upper bound of the projection 
(higher H) keeps increasing up to 2100 even though the 
forcing has been decreasing since 2045, while the lower 
bound (lower H) has less memory and begins to decrease 
as early as 2055. The median SCRF surface temperature 
projection for FAerRCP

 (or FAerQa
 ; hereafter, the SCRF result 

using FAerQa
 is given in brackets after the result using 

FAerRCP ) under RCP 2.6 exhibits a behaviour close to a 
stabilization over the 2043–2100 period, reaching, in 
2100, 1.5+0.4

−0.2
 K (or 1.3+0.3

−0.2
K  ) at the 90% confidence level 

compared to 1.7 ± 0.8K  for the MME (Fig. 9, top right).
The behaviour of the SCRF projection is in fact similar 

to the MME result over 2043–2100 in that regard, which 
has an average projection which also shows stabilization, 
and thus we can project the MME rather well after recali-
brating the sensitivity coefficient s . Out of the 32 CMIP5 
models analyzed and numbered for reference in Table 2, 
12 showed a significant cooling trend between 2043 and 
2100 (2, 5, 10, 11, 13, 15, 16, 18, 22, 24, 28, 29) while 9 
showed a significant warming trend over the same period 
(4, 6, 7, 8, 12, 21, 25, 26, 30); the remaining 11 models did 
not show a significant trend in either direction.

The forcing of the middle scenario, RCP 4.5, stabilizes 
in the mid 2060s, but the temperature projections, in Fig. 9 
(bottom left), continue rising until 2100, both with the 
SCRF and the CMIP5 MME, and reaching 2.3+0.7

−0.5
K  (or 

1.9+0.4
−0.3

K  ), at the 90 % confidence level, and 2.6 ± 0.8K 
respectively. Both projections for the business as usual 
scenario, RCP 8.5, show warming at a staggering rate up to 
4.1+1.3

−0.9
K (or 3.4+0.7

−0.5
K ) and 4.8 ± 1.3K , respectively, in 2100 

as shown on Fig. 9 (bottom right). For the RCP 4.5 and 
RCP 8.5 scenarios, the SCRF projection has 25% (44%) 
and 15% (46%) less uncertainty than the MME spread and 
the median is colder by 0.3 K (or 0.7 K) and 0.7 K (or 
1.4 K) respectively. In fact, the SCRF projection approxi-
mately corresponds to the lower half (or the lower quarter) 
of the CMIP5 MME projection range.

Table 3   Summary of ECS from other observational studies

Some results were taken directly from the summaries in Bodman 
et al. (2016) and Lewis and Crok (2014)

Source Mean Median Likely (17–83%)

IPCC
 First Assessment Report 

(1990)
2.5 1.5–4.5

 Second Assessment Report 
(1995)

2.5 1.5–4.5

 Third Assessment Report 
(2001)

1.5–4.5

 Fourth Assessment Report 
(2007)

3 2–4.5

 Fifth Assessment Report 
(2013)

1.5–4.5

Feedback framework
Gregory et al. (2002) 6.1 1.6-∞
 Lindzen and Choi (2011) 0.7 0.6–1.0

Otto et al. (2013) 2.0 1.2–3.9
SCMs
Meinshausen et al. (2009) 2.1–7.1
 Ring et al. (2012) 1.5–

2.
Bodman et al. (2013) 3.2 3.1 1.5–5.2
Skeie et al. (2014) 1.8 1.7 0.9–3.2
 Johansson et al. (2015) 2.6 1.9–3.3

Comprehensive
Sherwood et al. (2020) 3.1 2.6–3.8
Current study when using F

Aer
RCP

 ECS500 2.3 2.2 1.7–2.8
 ECS(Uniform Prior) 2.8 2.3 1.8–3.7

Current study when using F
Aer

Qa

 ECS500 1.9 1.7 1.5–2.2
 ECS(Uniform Prior) 2.2 1.8 1.5–2.7
 GCMs Very likely (5–95%)
 CMIP3 (AR4 Table 8.2) 3.2 3.2 2.1–4.4
 CMIP5 (AR5 Table 9.5) 3.22 2.89 1.9–4.5
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International negotiations often invoke 1.5 K and 2 K 
threshold not to be crossed in order to avoid a major cli-
matic upheaval. The probability when those temperature 

are reached under each scenario can be calculated for the 
SCRF and the CMIP5 MME (Fig. 10). For the latter, we 
assumed the global mean temperature of the MME every 
year to be normally distributed in order to obtain the prob-
ability of having crossed the given threshold at that time. 
Generally, the increase in probability as a function of years 
is sharper for the SCRF than for the CMIP5 MME given 
the smaller uncertainty on the projections.

For the low-emission scenario RCP 2.6, it is likely that 
the 1.5 K threshold would be exceeded in 2100 according 
to the SCRF projections with 54% probability (or 19%), 
while it was slightly more likely for the CMIP5 MME 
with 67% probability. It is very likely (>97%) that the 2 K 
threshold would not be crossed in 2100 according to the 
SCRF projection while the CMIP5 MME still shows 26% 
probability of exceeding.

For the medium-emission scenario RCP 4.5, the SCRF 
asserts it is extremely likely (>95%) that the global tem-
perature will be above 1.5 K as early as 2038 (or 2059); 
for the CMIP5 MME, it becomes extremely likely after 
2050. The 2 K threshold on the other hand will not as 
certainly be crossed in 2100 according to the SCRF pro-
jections as it has 94% (or 40%) of overshooting, similarly 
to the CMIP5 MME which shows a 89% probability of 
overshoot in 2100.

For the high-emission scenario RCP 8.5, all methods 
show a high probability of a warming exceeding 2 K before 
2100. According to the SCRF, the risk of overshooting 1.5 
K is negligible before 2024 (or 2028), but extremely likely 
after 2036 (or 2047), similarly to the CMIP5 MME which 
reaches the 95% probability of overshooting 1.5 K in 2038. 
The 2 K threshold is also extremely likely to be crossed 
about 15 years later in 2055 for both the SCRF and CMIP5 
MME (or 2068).

Fig. 9   The median forced 
temperature variability is 
projected using the SCRF, with 
the parameters calculated using 
FAerRCP

 (blue) or FAerQa
 (green), 

and compared with the CMIP5 
MME projection (black) and a 
SCRF projection of the MME 
(orange) as well as the historical 
temperature observations (red); 
90% CI are indicated along the 
projections (shaded) and for the 
year 2100 (thick vertical lines). 
The historical period (top left) 
and the projections until 2100, 
for RCP 2.6 (top right), RCP 4.5 
(bottom left) and RCP 8.5 (bot-
tom right), are shown

Fig. 10   The probability for the global mean surface temperature of 
exceeding a 1.5 K threshold (top), and a 2 K threshold (bottom) are 
given as a function of years for the SCRF, using FAerRCP (solid) and 
using FAerQa

 (dashed), and for the CMIP5 MME (circles). The three 
RCP scenarios are considered for each case: RCP 2.6 (blue), RCP 4.5 
(black) and RCP 8.5 (red)
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4 � Conclusion

Multidecadal climate projections rely almost exclusively 
on deterministic global climate models (GCMs) in spite of 
the fact that there are still very large structural uncertainties 
between Coupled Model Intercomparison Project phase 5 
(CMIP5) GCMs, i.e. each has its own climate, rather than 
the real world climate. Climate skeptics have argued that 
IPCC projections are untrustworthy precisely because they 
are entirely GCM based. While this conclusion is unwar-
ranted, it underscores the need for independent and quali-
tatively different approaches. It is therefore significant that 
the alternative GCM-free approach we present here yields 
comparable results albeit with smaller uncertainty.

This motivated us to elaborate a model, based on the scal-
ing of climate processes, for the response of the global mean 
air surface temperature of the Earth to external forcing: 
the scaling climate response function (SCRF). The forced 
component of temperature variability is reconstructed from 
external forcing within the linear response framework with 
a power-law scaling Green’s function truncated at high-
frequency. The stochastic component ultimately due to the 
internal turbulent dynamics of the atmospheric system is 
approximated by a fractional Gaussian noise process, as was 
proposed in the ScaLing Macroweather Model (SLIMM) 
(Lovejoy et al. 2015). Similarly, GCMs yield stochastic 
internal variability with an approximately linear mean forced 
response (Meehl et al. 2004), and we showed that in fact 
the SCRF model can project their forced response rather 
accurately.

Our model is robust and by restricting the parameter 
space, it allows for a full probabilistic characterization of 
uncertainty by Bayesian inference. A by-product of our 
analysis is a better constrained aerosol forcing since we 
found the aerosol linear scaling factor � to be within a 90 % 
CI of [0.1, 1.3] for the RCP aerosol forcing FAerRCP

 . This 
supports a revision of the global modern aerosol forcing 90 
% confidence interval to a narrower [−1.3,−0.1] W m−2 , 
similar to Stevens (2015). On the other hand, we obtain a 
very weak aerosol forcing if instead we use FAerQa

 , which was 
reconstructed directly from sulfur dioxide emissions using 
a linearized version of Stevens’ proposed model (Eq. 16). 
While the difference between the aerosol series might arise 
from a misreprensation of aerosol effects in GCMs which 
were used to produce FAerRCP , errors could also arise because 
of deviations from linearity with respect to SO2 emissions 
due to other aerosol species not explicitly taken into account 
to produce FAerQa

.
Following others (Church et al. 2005; Stenchikov et al. 

2009; Lovejoy and Varotsos 2016), we also found that the 
volcanic forcing was generally over-powered and overly 
intermittent, or too “spikey”, to produce results, within 

the SCRF framework, consistent with instrumental data. 
An effective volcanic forcing with lower-intermittency was 
obtained with a non-linear damping by the exponent � . It 
was found to be within [0.25,0.85] at the 90% confidence 
level using FAerRCP (or [0.30,0.90] using FAerQa

 ), yielding 
a corresponding CI of [0.02,0.15] (or [0.03,0.16] using 
FAerQa

 ) for the intermittency parameter C1 of the effec-
tive volcanic forcing, which is compatible with the lower 
intermittency of the temperature.

Our analysis supports better constrained TCR and ECS 
likely range than the IPCC AR5. When using FAerRCP

 (or 
FAerQa

 ), the range shrinks from [1.0, 2.5] K to [1.4, 2.0] K 
for the TCR (or [1.2, 1.5] K) and from [1.5, 4.5]K  to 
[1.8, 3.7]K  for the ECS (or [1.5, 2.7] K); the median esti-
mates also decrease from 1.8 K to 1.7 K (or 1.4 K) for the 
TCR and from 3.0 K to 2.4 K (or 1.8 K) for the ECS. This 
agrees with other recent observation-based studies (Otto 
et al. 2013; Skeie et al. 2014, and Johansson et al. 2015) 
which also support a downward revision of the ECS upper 
17% bound by at least half a degree. In addition, the 
ECS500 was found to be significantly smaller, 2.2+0.6

−0.5
K (or 

1.7+0.4
−0.2

K ), than the ECS. This implies that if the ECS is on 
the higher end of the CI, then a large fraction of the warm-
ing would be experienced hundreds of years after a poten-
tial stabilization of anthropogenic forcing. An important 
and rather conservative claim supported by this evidence 
is therefore that the upper 5% ECS bound and median of 
AR5 can be safely revised downward to 4.0 K and 2.5 K. 
The lower 5% bound of 1.5 K, on the other hand, remains 
reliable.

Our ECS likely range is therefore better constrained 
than paleoclimate estimates such as Hegerl et al. (2006) 
and PALEOSENS Project Members (2012) who found 
[1.9, 4.3]K  and [2.2, 4.8]K  respectively. Our method is 
strictly based on modern instrumental data and the low 
uncertainty could be an “epoch bias”, i.e. if climate sen-
sitivity depends on the climate mean state, then an esti-
mate based on only one period would not necessarily be 
representative.

Our historical approach also decreases the uncertainty 
on projections by more than a factor of two, even with 
the large uncertainty associated with aerosol forcing, 
compared to the structural uncertainty of a multi-model 
ensemble (MME) of CMIP5 global climate models for 
RCP scenarios. However, the uncertainties compared are 
qualitatively different since it is not possible to charater-
ize probabilistically the entire set of parameters involved 
in GCMs. The structural uncertainty in a MME is rather 
based on the dispersion between the GCM runs, each pro-
duced with a definite set of parameters. Our approach on 
the other hand does not yield any structural uncertainty 
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since we assumed a single CRF which is able to produce 
a wide range of climate responses.

The SCRF projections to 2100 are entirely independent 
of the GCMs. Still, they are within the uncertainty bounds 
of the latter, effectively providing an independent confirma-
tion of the GCM projections. This eliminates one of the key 
climate skeptic arguments: projections are not reliable since 
they are solely GCM-based. This conclusion is therefore 
important not only for scientists but also for policy makers, 
stressing the need for mitigation and adaptation measures. 
The SCRF is a the first of a new family of approaches that 
directly model the temperature at monthly scales and longer, 
see for example Procyk et al. (2020) that, in addition to scal-
ing, directly exploits the principles of energy-balance (the 
fractional energy-balance equation) and produces projec-
tions and climate sensitivity estimates in a similar range, 
although with a better estimation of the scaling exponent H 
by also utilizing the macroweather high-frequency response.

According to our projections made to 2100, to avert a 1.5 
K warming, future emissions will be required to undergo 
drastic cuts similar to RCP 2.6, for which we found a 46% 
probability to remain under the said limit; it is virtually cer-
tain that RCP 4.5 and RCP 8.5-like futures would overshoot. 
Even a 2.0 K warming limit would surely be surpassed by 
2100 under RCP 8.5 and probably also under RCP 4.5, with 
only a 6% chance of remaining under the limit. The safest 
option remains RCP 2.6 which we project to remain under 
2.0 K with very high confidence. The question remains 
whether it is at all realistic given that it relies strongly on 
the massive deployment of speculative negative emission 
technologies.

On the other hand, our model has obvious limitations 
since it assumes a linear stationary relationship between 
forcing and temperature, neglecting nonlinear interac-
tions which could arise as the system evolves, as it cur-
rently warms. In particular, so-called tipping points could 
be reached in the coming century which would lead to a 
breakdown of the linear model proposed. Such potential 
behaviours are of critical value for improving future projec-
tions, but they have not yet been observed with high confi-
dence even in GCMs. This underlines the need to exploit 
paleoclimate archives to achieve a better understanding of 
low-frequency natural variability, namely the transition scale 
from the macroweather regime to the climate regime. In this 
study, we have assumed the increased variability in the cli-
mate regime to be strictly a result of forcing, but internal 
modes of variability could also have a significant contribu-
tion for longer timescales.

More relevant to human activities and adaptation poli-
cies are regional projections which are also almost entirely 
produced by GCMs. In addition to the discrepancy between 
their global mean response, CMIP5 GCMs show widely 

varying spatial patterns of warming over the last century 
between themselves, and with significant differences from 
those observed in gridded instrumental temperature datasets 
(Hébert and Lovejoy 2018). Future work should explore the 
possibility of data driven models at the regional scale for cli-
mate projection. Already, it was found by Lovejoy and de Lima 
(2015) that in the macroweather regime, statistical space-time 
factorization holds for temperature and precipitation, both in 
instrumental datasets and in GCMs. This implies the possibil-
ity of developing linear response models for regional projec-
tions, although the main obstacle foreseen will be to identify 
the forced signal in the stronger regional internal variability.
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Appendix: Response of the SCRF 
to theoretical forcing scenarios

In this section, we calculate the expected temperature response 
for different forcing scenario under the SCRF of Eq. 13. The 
expected forced temperature response for an Nth-order poly-

nomial forcing function Fpoly =

N∑
i=0

ait
i�(t) can be written as:

http://creativecommons.org/licenses/by/4.0/
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where ai is the i th-order coefficient of the forcing polyno-
mial and the Heaviside function �(t) makes the forcing 
null for negative times (the forcing is assumed to be zero 
for t < 0 ). This is convenient not only since the ECS and 
TCR experiments are specific cases, but also because it also 
allows to calculate the theoretical response for any forcing 
which can be approximated by a polynomial. Of course, 
any orthogonal basis of functions could be used. Note that 
∀H ∈ {0,−1,−2, ...,−N} , where N is the order of the poly-
nomial, there is a singularity, but the limit at such points is 
the same from both sides so that we can redefine it the value 
of the limit without further complications.

To measure ECS, the forcing scenario used has a0 = �F 
and ai = 0 for all i > 0 , which corresponds to the following 
step-function :

where �F corresponds to a doubling in CO2 and �(t) is 
again the Heaviside step function. We can calculate the 

(A1)

�Tpoly(t) =∫
t

−∞

N∑
i=0

ait
�is

(−H)

�

(
t − t� + �

�

)H−1

�(t�)dt�

(A2)

�Tpoly(t) = − s
H

�

N∑
i=0

ai

i∑
k=0

(
i

k

)
(t + �)i−k

H + k

(−1)k

�H−1
((t + �)H+k − �H+k)

(A3)Fstep(t) = �F�(t)

as the temperature keeps increasing monotonically. As the 
scaling exponent approaches 0 from the left, H → 0− , the 
convergence time increases and then diverges for a positive 
exponent. We also define ECS for a more concrete horizon 
of 500 years :

This allows us to calculate the warming fraction left for a 
given scaling exponent H between half a millennium and 
infinity.

To calculate TCR, a different forcing scenario is used 
where a doubling of carbon dioxide takes place over 
70 years, increasing at a rate of 1% per year, and then held 
constant. The forcing produced by carbon dioxide is pro-
portional to the logarithm of its concentration and there-
fore, this exponentially increasing carbon dioxide scenario 
corresponds to a linear increase in forcing with a1 = �F�−1

tr
 

and ai = 0 ∀i ≠ 1 :

where �tr is the time over which the doubling takes place, 
that is 70 years, and �F is the final change in forcing. We 
can again calculate the temperature response analytically 
with the SCRF :

The temperature change at �Ttr(t = �tr) , that is when the 
forcing reaches its final value, is then defined as the TCR. 
This measure is not representative of the ECS, although 
they become equal for sufficiently large negative values 
of the scaling exponent H, but it is even more relevant for 
near-term projections as the TCR will be the main contri-
bution to global warming as long as the exponential rise 
in carbon dioxide concentration continues. If we take 
t → ∞ , we notice that the left term in the bracket vanishes 
and we are left with Eq. A6. We thus see that the steady-
state response does not depend on the forcing scenario as 
�Ttr(t → ∞) = �Tstep(t → ∞) , but only on the change in 
forcing. It is convenient to analytically calculate the ratio of 
TCR to ECS as a function of H and � :

(A7)ECS500 = �Tstep(500 years)

(A8)Ftr(t) =

⎧⎪⎨⎪⎩

0 t < 0

𝛥F t

𝜏tr
0 < t < 𝜏tr

𝛥F 𝜏tr < t

(A9)�Ttr(t) =

⎧⎪⎨⎪⎩

−s�F

�H�tr(H+1)

�
(� + t)H+1 − �H(� + t(H + 1))

�
0 ≤ t ≤ �tr

−s�F

�H

�
(�+t)H+1−(�+t−�tr)

H (�+t+�trH))

�tr(H+1)
+ (� + t − �tr)

H − �H)
�
�tr ≤ t

(A10)
TCR

ECS
=

Ttr(�tr)

Tstep(t → ∞)

temperature change for this step-increase in forcing at any 
time following the increase:

which can be rewritten as:

To obtain the ECS, we only need to take t → ∞:

ECS is thus the temperature change at infinity when a 
steady-state is reached; in this model this requires H < 0 . 
If H ≥ 0 , we effectively have a runaway greenhouse model 

(A4)�Tstep(t) = −s�F

[
(� + t)H − �H

�H

]

(A5)�Tstep(t) = s�F

[
1 −

(
t

�
+ 1

)H
]

(A6)ECS = 𝛥Teq = 𝛥Tstep(t → ∞) =

{
s𝛥F H < 0

∞ 0 ≥ H
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This ratio is shown on Fig. 2 for � = 2 years with equilib-
rium defined at infinity and at 500 years. It decreases mono-
tonically to zero for the former as the scaling exponent 
approaches zero from the left and the ECS diverges. The gap 
between TCR and ECS therefore deepens for higher values 
of H, which explains the sensitivity of ECS to H since the 
observed warming, similar to the TCR, is a smaller fraction 
of the ECS. On the other hand, for increasingly negative 
values of H, the TCR to ECS goes to one as the memory of 
the model becomes infinitely small, effectively becoming a 
Dirac � function. Also shown, the warming fraction left after 
500 years of constant forcing informs us about the longest 
component of the memory of the model, and that therefore, 
for values of H ≈ −0.5 and greater, a sizeable fraction of the 
warming will occur beyond that horizon.

Appendix: inner scale of the linear response

In this section, we present an argument in favour of the 
inner scale of the linear response at approximately 2 years. 
We mentioned that the physical mechanism which we 
approximate by integrating the radiative forcing history 
with the SCRF is the accumulation of heat, mostly, in 
the oceans which in turn drives the forced temperature 
response in the atmosphere and at the sea-surface. There-
fore, we expect a strong correlation between the two at 
large time scales where the forced variability overwhelms 
the internal one, and thus a similar large scale scaling 
behaviour which should be dominated by the anthropo-
genic effects. It may seem surprising that up until now, 
the fundamental issue of land-ocean coupling has, to our 
knowledge, not been investigated empirically. The likely 
reason is that it requires the use of Haar, or other appro-
priately defined, fluctuations. The Haar fluctuation over an 
interval �t is simply the difference between the mean over 
the first and second half of the interval. It is a convenient 
way to characterize variability as a function of time scale 
in real space and it is valid whether fluctuations increase 
or decrease with scale, which is necessary here in order to 
avoid spurious statistical issues at low-frequencies (Love-
joy and Schertzer 2012)

Figure 11 compares the mean Haar fluctuations as a 
function of timescale of the global sea-surface tempera-
ture (SST), the land-surface air temperature (LST) and 
the global combined land-ocean surface air temperature 
(SAT). The forced component of variability dominates for 
large timescales and we see that SST, LST and SAT have 
similar forced variability, higher for LST and weaker for 
SST as expected, and a scaling behaviour akin to the forc-
ing for time scales above 20 years. For short timescales, 
the internal variability dominates and this leads to diverg-
ing behaviour between the SST, LST and the SAT since 

the turbulent dynamics of the ocean and the atmosphere 
are different. The driving energy rate density, the turbu-
lent � that determines the weather-macroweather transition 
scale �w , is about 10−3 W Kg−1 in the atmosphere, but only 
about 10−8 W Kg−1 in the ocean surface layer (Lovejoy and 
Schertzer 2010). The transition time scale is proportional 
to �−

1

3 so that the weather-macroweather transition in the 
SST is visible around 2 years rather than at a sub-monthly 
scale in the atmosphere, about 10 days.

The SAT should scale similarly to LST in the mac-
roweather regime since they are both atmospheric fields 
with similar turbulent dynamics, but we observe a dis-
crepancy on Fig. 11 : as expected the monthly LST series 
do not show the sub-monthly transition, but the scaling 
of SAT below 2 years shows a flattening. It is possible 
this is just a bias resulting from the inclusion of SST as 

Table 4   The ECS and ECS500 are calculated for different values of 
the inner scale �

A combination of the three results weigthed by their likelihood is also 
shown

� Median 
ECS (K)

ECS likely 
range (K)

Median 
ECS500 (K)

Likely 
range 
ECS500 (K)

1 year 3.4 [2.2,7.6] 2.3 [1.9,2.8]
2 years 2.3 [1.9,3.4] 2.1 [1.8,2.6]
4 years 2.0 [1.7,2.4] 1.9 [1.7,2.3]
Combined 2.4 [1.8,4.4] 2.1 [1.8,2.6]

Fig. 11   The mean Haar fluctuations (in units of K)  are shown as a 
function of timescale �t (in years), adjusted to annual resolution from 
monthly resolved series, for LST (blue), SAT (black) and SST (red), 
and the shaded areas correspond to the standard deviation between all 
the datasets considered. Vertical dashed lines indicate the domains 
over which internal or forced variability dominates, or where they are 
of similar magnitude. At high-frequency, the scaling behaviours differ 
due to diverging turbulent dynamics of the internal variability. The 
same analysis performed for the forcing series (orange; in number of 
CO2  doublings) shows a similar scaling behaviour at low-frequency, 
where the forced variability dominates, between the forcing and the 
temperature series. The series used are described in the data sub-sec-
tion
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air-surface temperature in global SAT, which could artifi-
cially decrease the high-frequency variability of SAT, but 
more investigation needs to be done to confirm the claim.

The model presented is not expected to reproduce the inter-
nal variability, which is treated as an independant stochastic 
process, and the high-frequency cutoff � was introduced as 
the smallest scale over which the linear response approxima-
tion is expected to hold. As mentioned above, this should 
translate in correlation between the ocean and the atmosphere 
forced responses. Figure 12 shows the mean pairwise corre-
lation between the first-order Haar fluctuations of SST, LST 
and SAT at different timescales. We observe a steep increase 
to high correlation between all pairs up to 2 years; the SAT 
series are composed from the LST and SST series and as such 
it is not surprising to find high correlation, but the completely 
independent LST and SST series confirm the same transition. 
This supports our interpretation that as we consider larger time 
scales, the internal variability averages out and the air surface 
temperature becomes proportional to the ocean temperature as 
a consequence of the low-frequency dominance of the forced 
response from integrated radiative forcing on both. This moti-
vates us to fix the model parameter � = 2 years for simplicity.

Result for ECS and ECS500 are calculated for 
� ∈ {1, 2, 3} years in order to evaluate the sensitivity of the 
result to this choice (Table 4). We also give an average of the 
three results weigthed by their relative likelihood (which yields 
weights of 0.38,0.33 and 0.29 respectively), and the result is 
in fact very close to the � = 2 years value used. The likelihood 
function therefore varies slowly along the direction of � , with 

the 3 values almost equally probable, and does not allow to 
constrain the parameter well by itself. The parameter estima-
tion with a smaller � yields an H closer to zero, and therefore 
the high ECS tail thickens as ECS increases as H → 0− , and as 
ultimately diverges for H ≥ 0 . However, the convergence time 
also increases as H → 0− and so the larger part of the response 
will happen at multi-centennial, multi-millenial and even much 
longer timescales. Therefore, the choice of � can have a sizable 
impact for the theoretical ECS at infinity, but the effect will be 
marginal for any centennial projections and quasi-equilibrium 
climate sensitivity such as ECS500.

Appendix: Numerical estimation of the SCRF 
parameters

This appendix provides extra information concerning the 
SCRF model parameter estimation technique and tests the 
efficacy of the method on synthetic time series.

The parameters for the fractional Gaussian noise (fGn) 
(which is used as a model for the internal variability) 

Fig. 12   The average correlation coefficient r between the first-order 
Haar fluctuations of LST-SAT (red), SST-SAT (black), and LST-SST 
(blue) are shown as a function of timescale �t in years. It was cal-
culated for an ensemble of all possible pairs between the LST, SST 
and SAT datasets considered, and the shaded areas correspond to the 
one standard deviation. There is a rapid increasing trend in correla-
tion between land and ocean as a function of timescale under 2 years 
and a slowly increasing trend above 2 years. To improve the statistics 
of the fluctuations at large timescale, the fluctuations from reversed 
series are also considered; this means there are only 2 fluctuations for 
timescales above half of the series length and only 1 or -1 correla-
tion values are possible; thus the sharp increase above 40 years is not 
quantitatively significant

Fig. 13   The forced temperature response is removed from the C&W 
instrumental temperature series to obtain the associated internal 
variability series (blue). The best volatility � and Hurst exponent H′ 
parameters to describe the series as an fGn process were estimated as 
0.10 and −0.26 respectively. Three single realizations of an fGn pro-
cess with the same parameters are shown (black, red and orange) are 
shown as examples. Each series has null mean and fluctuates about its 
associated reference line (dashed)

Table 5   Parameters for the fractional Gaussian noise process used 
for the error model when calculating the likelihood function for each 
dataset

The mean � was set to zero, so only the volatility � and exponent H′ 
are given

Dataset � H
′

HadCRUT4 0.10 −0.24

C&W 0.10 −0.26

GISTEMP 0.12 −0.17

NOAAGlobalTemp 0.12 −0.15

BEST 0.11 −0.23
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are estimated with an iterative procedure. A first esti-
mate is made from the internal variability obtained from 
a likely combination of parameters; it is then used as 
the error model to find the parameter combination with 
maximum likelihood whose associated internal vari-
ability serves to obtain the second estimate of the fGn 
parameters; the maximization process is repeated until 
the parameters converged, which occurred after only 2 
steps. Figure 13 shows the internal variability from the 
Cowtan & Way (C&W) instrumental temperature series 
and three other realizations of the same estimated fGn 
process (Table 5). For CMIP5 GCMs, it would be sim-
pler since the fGn parameters could be estimated directly 

from unforced control runs which correspond to realiza-
tions of the internal variability in each GCM. The fol-
lowing Mathematica 10.4 (Wolfram Research Inc 2016) 
functions were used to perform the above calculations 
: LogLikelihood[proc,data], FractionalGaussianNoise-
Process[�,�,h] and EstimatedProcess[data,proc]. Note 
that the Hurst exponent h used within Mathematica 10.4 
describes the scaling behaviour of the associated fractional 
Brownian motion obtained by integrating the fGn. The 
notation H� = h − 1 corresponds to the associated param-
eter in Lovejoy et al. (2015) which directly describes the 
scaling associated with the fluctuations of the fGn itself. 
H′ should not be confused with the scaling exponent H 

Fig. 14   Each graph shows the 
simulated forced temperature 
response (thick, blue) with 
the following (H, �) parameter 
combination : (−0.2, 0.8) (top 
left), (−0.6, 0.5) (top right), 
(−0.2, 0.5) (bottom left)and 
(−0.6, 0.8)(bottom right). 
To each forced response, 25 
realizations of a fGn were 
added (thin, colors) to produce 
synthetic series of known 
parameters

Fig. 15   The resulting PDFs for 
each of the 25 realizations of 
fGn considered for the param-
eters H (blue) and � (black) are 
shown for simulations produced 
with the following (H, �) param-
eter combination : (−0.2, 0.8) 
(top left), (−0.6, 0.5) (top 
right), (−0.2, 0.5) (bottom left)
and (−0.6, 0.8)(bottom right). 
In addition, the re-normalized 
product of the individual PDFs, 
after they were re-interpolated 
at 0.01 increments, are shown 
for H (red) and � (orange). The 
PDFs for the individual realiza-
tions have been multiplied by a 
factor of 5 for clarity
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used to produce the forced temperature response using the 
SCRF.  

To show the efficacy of our method, we test it on sim-
ulations generated by adding realizations of fGn, with 
� = 0.1 and H� = −0.25 , onto forced temperature response 
generated with Eq. 20. Given that it is computationally 
heavy to calculate the likelihood of a fGn, we restrict the 
test simulations to � = 1 , s = 1 , H ∈ {−0.2,−0.6} and 
� ∈ {0.5, 0.8} . This yields 4 parameter combinations to 
which are added 25 realizations of fGn with known param-
eters (�, �, h) = (0, 0.1, 0.75) , shown on Fig. 14.

Figure 15 shows the resulting PDF for H and � with � 
known and the best s found. The likelihood function was 
calculated ∀H ∈ [−1.1, 0.3] and ∀� ∈ [0.2, 1.0] both in 
increments of 0.05. For each combination of H and � , the 
best s is found; first an estimate s0 is made by least-square 
regression and then a maximum likelihood estimate is made 
∀s ∈ [0.85s0, 1.15s0] in increments of 0.05s0 . The likelihood 
function is then interpolated to find the best s and its associ-
ated PDF using Bayes’ rule with a uniform prior distribu-
tion; the relative error �s for each s , defined as �s = �ss

−1 
where �s is the one standard deviation defined from the PDF, 
was found to be very small and consistent between the differ-
ent parameter combinations (H, �) . Results are summarized 
for each set of simulations considered in Table 6.

Therefore, we can recover the parameters accurately with 
this Bayesian approach with a fGn error model; the 90% 
confidence intervals are effective, but they remain large and 
widely varying for single realizations because of the stochas-
tic internal variability.

Decreasing the resolution in H to 0.1 does not alter the 
result significantly and for the parameter estimation from 
observational data it will be sufficient to calculate the like-
lihood function ∀s ∈ [0.085s0, 1.15s0],∀H ∈ [−1.5, 0.2] in 
increments of 0.1, ∀� ∈ [0.2, 1.0] in increments of 0.05 and 
∀� ∈ [−0.3, 2.] in increments of 0.1. Since the relative error 
on s is small and consistent, we neglect the uncertainty on 
this parameter for simplicity and only consider the best value 
for each H, � and � parameter combination. The resulting 
3-dimensional likelihood surface was then interpolated to 
higher resolution with a second-order interpolation and used 

to calculate the probabilities of the climate sensitivities and 
projections corresponding to each parameter combination.
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