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• The probability of yield loss under
droughts is estimated for four major
crops.

• Yield loss risk grows non-linearly with
increase in drought severity.

• Yield loss risk is projected to increase in
the future by an ensemble of models.
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Crop yield loss risk (%) in the past and future when experiencing a moderate, extreme, severe and exceptional
drought. Each dot represents themulti-model ensemblemean, with the grey error lines denoting the uncertainty
range.
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Understanding the potential drought impacts on agricultural production is critical for ensuring global food secu-
rity. Instead of providing a deterministic estimate, this study investigates the likelihood of yield loss of wheat,
maize, rice and soybeans in response to droughts of various intensities in the 10 largest producing countries.
We use crop-country specific standardized precipitation index (SPI) and census yield data for 1961–2016 to
build a probabilistic modeling framework for estimating yield loss risk under a moderate (−1.2 b SPI b −0.8),
severe (−1.5 b SPI b −1.3), extreme (−1.9 b SPI b −1.6) and exceptional (SPI b −2.0) drought. Results show
that there is N80% probability that wheat production will fall below its long-term average when experiencing
an exceptional drought, especially in USA and Canada. As for maize, India shows the highest risk of yield reduc-
tion under droughts, while rice is the crop that is most vulnerable to droughts in Vietnam and Thailand. Risk of
drought-driven soybean yield loss is the highest in USA, Russian and India. Yield loss risk tends to grow faster
when experiencing a shift in drought severity frommoderate to severe than that fromextreme to the exceptional
category, demonstrating the non-linear response of yield to the increase in drought severity. Sensitivity analysis
shows that temperature plays an important role in determining drought impacts, through reducing or amplifying
drought-driven yield loss risk. Compared to present conditions, an ensemble of 11 crop models simulated an in-
crease in yield loss risk by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1 for wheat, maize, rice and soybeans
by the end of 21st century, respectively, without considering the benefits of CO2 fertilization and adaptations.
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This study highlights the non-linear response of yield loss risk to the increase in drought severity. This implies
that adaptations should be more targeted, considering not only the crop type and region but also the specific
drought severity of interest.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Table 1
Description of crop models used in this study.

Crop model Model type Key literature

CGMS-WOFOST Spatially distributed site-based
process model (based on WOFOST)

(de Wit and Van Diepen,
2008)

CLM-Crop Global ecosystem model (Drewniak et al., 2013)
GEPIC Site-based process model (based on

EPIC)
(Liu et al., 2007;
Williams et al., 1983)

LPJ-GUESS Global ecosystem model (Lindeskog et al., 2013)
LPJmL Global ecosystem model (Waha et al., 2012)
pAPSIM Site-based process model (Keating et al., 2003)
PEGASUS Global ecosystem model (Deryng et al., 2016)
EPIC-IIASA Site-based process model (based on

EPIC)
(Izaurralde et al., 2006;
Williams et al., 1983)

EPIC-Boku Site-based process model (based on
EPIC)

(Izaurralde et al., 2006;
(Williams et al., 1983)

ORCHIDEE-crop Global ecosystem model (Wu et al., 2016)
pDSSAT Site-based process model (Jones et al., 2003)
1. Introduction

Global food demand is expected to roughly double by 2050s
(Godfray et al., 2010; Tilman et al., 2011). To meet growing food de-
mand in the context of global warming requires enhanced understand-
ings of the climatic factors influencing food production. Important in
this regard is to examine how crop yield responds to climate variability
and extremes. Typically, farmers would be more capable of adapting to
the gradual changes in local mean climate conditions than extreme
events, calling for the need of improved understanding of the impacts
of climate extremes on agricultural production (Lesk et al., 2016;
Zampieri et al., 2017). Drought, as an extreme weather phenomenon,
is one of the major climatic constraints to crop yield (Lesk et al., 2016;
Lobell et al., 2014; Matiu et al., 2017; Mishra and Cherkauer, 2010;
Zipper et al., 2016). Under drought conditions, crops close their stomata
to limit evaporative water loss, thus reducing carbon uptake by photo-
synthesis and decreasing yields. Globally, it is estimated that a cereal
(maize, rice and wheat) loss of 1820 million Mg has been caused by
droughts during the past four decades (Lesk et al., 2016).

Assessment of drought impact on agricultural production is chal-
lenging, especially given that drought itself is driven by complex inter-
actions among precipitation, temperature, vapor pressure, and solar
radiation. In addition, compound changes in other physical and
agronomical factors influencing crop growth would complicate the as-
sessment of yield response to droughts. For example, Leng (2017a,b)
showed that agricultural management such as irrigation can mitigate
the negative impacts of water stress on maize yield, though the study
was limited to US central High Plains. Recent process-based modeling
studies also revealed large uncertainties in crop yield simulations aris-
ing from our incomplete knowledge of the physical and agronomical
processes underlying crop growth and yield (Asseng et al., 2011;
Elliott et al., 2015; Folberth et al., 2016; Rosenzweig et al., 2014). Thus,
the incomplete understanding of the physical processes make it hard
to derive certain estimates of drought impact on crop yield.

Previous studies have discussed the potential impact of drought on
crop production in the United States (Lobell et al., 2014; Troy et al.,
2015; Zipper et al., 2016), China (Shi and Tao, 2014; Yu et al., 2014),
Australia (Madadgar et al., 2017), South Africa (Araujo et al., 2016), Re-
public of Moldova (Potopová et al., 2016), Czech Republic (Hlavinka
et al., 2009), and the whole globe (Lesk et al., 2016; Matiu et al.,
2017). Although these studies have provided valuable insights into the
possible impacts of droughts, they are mainly based on deterministic
approaches, reporting the overall yield fluctuation associated with
drought. Recently, probabilistic methods have been adopted with the
purpose of accounting for uncertainty from climate data (Tao et al.,
2009; Tebaldi and Lobell, 2008). To date, probabilistic estimation of
yield changes under a given drought of specific severity has not been
conducted across global agricultural regions.

This study fills the gap by assessing the risk of crop yield loss under
droughts in global major producing countries in a probabilistic manner.
Specifically, we address the following scientific questions: 1) what are
the possible changes in crop yield in response to an individual drought
of specific severity? Understanding the distribution of possible out-
comes of crop yield under a given drought can help decision-makers
and insurers in selecting appropriate strategies based on the likelihood
of different outcomes. 2) Does yield loss risk grow linearlywith increase
in drought severity? Examining yield sensitivity to droughts of various
severity can better inform targeted adaptation and mitigations.
3) How will the likelihood of yield reduction change in the future?
2. Materials and methods

2.1. Crop yields and climate data

Country level census data on yields of the four largest commodity
crops (i.e. wheat, maize, rice and soybeans) are collected from the
Food andAgriculture Organization (http://faostat.fao.org) for the period
1961–2016. These four crops provide ~75% of all calories consumed by
humans (Lobell et al., 2011). To investigate future changes in yield
loss risk under droughts, we obtained crop yields simulated by 11
gridded crop models (Table 1) driven by five global climate models
(Table 2) under RCP8.5 emission scenario from the Agricultural Model-
ing Inter-comparison and Improvement Project (AgMIP) (Rosenzweig
et al., 2013) and the Inter-Sectoral Impact Model Inter-comparison Pro-
ject (ISI-MIP) (Warszawski et al., 2014).

Gridded monthly climate data at 0.5° × 0.5° for the period
1961–2016 were obtained from the Climate Research Unit (Mitchell
and Jones, 2005). Spatially weighted averages of gridded precipitation
and temperature were computed for each crop and growing season
based on weights defined by the crop area (Portmann et al., 2010),
resulting in annual growing-season precipitation and temperature for
each crop-country and crop-globe combination following (Lobell and
Field, 2007). Growing seasons are determined from the crop calendar
dataset developed by (Sacks et al., 2010). In this study, we focus on
the top 10 producing countries that are highly relevant for global food
market and security (Lobell, 2007; Matiu et al., 2017). The combined
production of the top 10 productive countries accounts for 96%, 87%,
78% and 68% of global total production of soybeans, rice, maize and
wheat, respectively. Yield variations in these major producing regions
would therefore lead to significant anomalies at the global level, affect-
ing global food market and security. Here, the FAO country-level yield
data and observed climate are used to build the probabilistic model,
based on which the historical sensitivity of crop yield to droughts is ex-
amined. To be consistent with observation-based analysis, the gridded
crop model simulations are aggregated to country level based on

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 2
Descriptions of 5 GCMs used in this study.

Model name Institute
acronyms

Institute full name

GFDL-ESM2M NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory
HadGEM2-ES MOHC

(additional
realizations
by INPE)

Met Office Hadley Centre and
Instituto Nacional de Pesquisas Espaciais

IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace
MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Science and

Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and

National Institute for Environmental Studies
NorESM1-M NCC Norwegian Climate Centre

813G. Leng, J. Hall / Science of the Total Environment 654 (2019) 811–821
which the projected changes in yield loss risk by the end of 21st century
are investigated.

2.2. Probabilistic modeling of yield reduction risk under droughts

We develop a copula-based probabilistic model for estimating the
possible responses of crop yields to a drought event of specific severity.
To do this,wemodel thedependency between a drought index and crop
yield using a copula function (Nelsen, 2007). Copulas enable modeling
dependency between variables that do not follow the same distribu-
tions including non-normal distributions (Nelsen, 2007), thus avoiding
assumptions about linearity or underlying probability distributions. In
addition, copula is capable of proper treating the tails of distribution,
which is critical for assessing extreme event like drought. In this
study, five bivariate copula families, which arewidely adopted in the lit-
erature, are used for fitting the joint probability distribution between a
drought index (x) and crop yields (y) by

FXY X; Yð Þ ¼ C FX Xð Þ; FY Yð Þ½ � ð1Þ

where FX(X) and FY(Y) are the marginal distributions of x and y, respec-
tively. C is the cumulative distribution function (CDF) of copula. Details
on these copula families and their mathematical descriptions can be
found in Table 3. The conditional probability of crop yield dropping
below a certain amount (Y b y) under a given drought event (X = x)
can be expressed as follows:

FY jX Ybyð j X ¼ xÞ ð2Þ

Based on the fitted copula, the conditional probability density distri-
bution of fy∣x(y|x) is derived:

f YjX yð j xÞ ¼ c FX Xð Þ; FY Yð Þ½ � � f Y yð Þ ð3Þ
Table 3
Copula families used in this study and the mathematical descriptions.

Name Mathematical description

Gaussian R∅−1ðuÞ
−∞

R∅−1ðvÞ
−∞

1

2π
ffiffiffiffiffiffiffiffiffi
1−θ2

p expð2θxy−x2−y2

2ð1−θ2Þ Þdxdyb

θ : Linear correlation coefficient
∅ : Standard normal cumulative distribution function

t R t−1
θ2

ðuÞ
−∞

R t−1
θ2

ðvÞ
−∞

Γðθ2þ2
2 Þ

Γðθ22 Þπθ2
ffiffiffiffiffiffiffiffiffi
1−θ21

p ð1þ x2−2θ1xyþy2

θ2
Þ
θ2þ2
2 dxdyc

θ1 : Linear correlation coefficient
tθ 2

: Cumulative distribution function of t distribution with
θ2 degree of freedom

Clayton max(u−θ + v−θ − 1,0)−1/θ

θ : Measure of dependency between u and v.
Frank − 1

θ ln ½1þ ð expð−θuÞ−1Þð expð−θvÞ−1Þ
expð−θÞ−1 �

θ : Similar to Clayton copula
Gumbel

expf−½ð− lnðuÞÞθ þ ð− lnðvÞÞθ�
1
θg

θ : Similar to Clayton copula
where c is the copula, fY(y) is the probability distribution function (PDF)
of crop yield. The probability of crop yield dropping below a certain
amount (i.e.,FY∣X(Y b y | X = x)) can be estimated as the area underfY∣X
(y|x) for Y b y.

2.3. Uncertainty quantification

We use the Markov Chain Monte Carlo (MCMC) simulation tech-
nique within a Bayesian framework to infer the posterior distribution
of copula parameters, based on which the uncertainty arising from our
probabilistic model is quantified. The MCMC numerically solves the
Bayes' equation to estimate the posterior distribution of copula param-
eter pðθj~EÞ

p θj~E
� �

¼
p θð Þp ~Ejθ

� �
p ~E
� � ∝p θð Þp ~Ejθ

� �
ð4Þ

where θ is the copula parameter, ~E is the empirical joint probability vec-
tor, p(θ) is the prior distribution of θ, whilepð~E) is the evidence.pð~EjθÞ is
the likelihood function that is solved by assuming the error residual edi−
diðθÞ between copula derived and empirical joint probability are uncor-
related.

p ~E�jθ
� �

≅ℒ θj~E�
� �

¼
Yn
i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2π ~σ�

p exp −
1
2
~σ�−2 ~di�−di θð Þ

h i2� �
ð5Þ

where ~σ is the standard deviation ofmeasurement error estimated from
MCMC simulations. Based on the posterior distribution of the parame-
ters, the uncertainty range of our results can be derived.

2.4. Estimation of yield loss risk under droughts

Drought is multi-dimensional and can be grouped into meteorolog-
ical, agricultural, hydrological and socio-economic droughts (Heim Jr,
2002; Huang et al., 2016; Leng et al., 2015; Mishra and Singh, 2010).
In this study, we use the Standardized Precipitation Index (SPI)
(McKee et al., 1993) to estimate the impacts of moisture supply origi-
nated from precipitation. A drought event is identified when the SPI
value is below −0.8, following the U.S. Drought Monitor (http://
droughtmonitor.unl.edu/). Yield changes under four drought categories
(i.e.moderate, severe, extremeand exceptional droughts) are examined
to quantify the sensitivity of yield response to the increase in drought
severity (Table 4). Besides SPI, we use a drought index that includes
the effects of temperature, given the critical role of temperature in
crop growth and yield (Lobell et al., 2013; Lobell et al., 2014). We note
that there are several indices that take into account the effects of
Parameter range Reference

θ ∈ [−1,1] (Renard and Lang, 2007)

θ1 ∈ [−1,1]; θ2 ∈ [0,∞] (Demarta and McNeil, 2005)

θ ∈ [−1,∞]\0 (Clayton, 1978)

θ ∈ ℝ\0 (Li et al., 2013)

θ ∈ [−1,∞] (Zhang and Singh, 2006)

http://droughtmonitor.unl.edu
http://droughtmonitor.unl.edu


Table 4
Classification of droughts following theU.S. DroughtMonitor (http://
droughtmonitor.unl.edu/).

Category Range of SPI

Moderate drought −1.2~−0.8
Severe drought −1.5~−1.3
Extreme drought −1.9~−1.6
Exceptional drought ≤−2.0
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temperature directly or indirectly, e.g., the standardized precipitation
evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010) and the
Palmer Drought Severity Index (PDSI) (Palmer, 1965). Here, we select
the SPEI for analysis, as it is an extension of SPI in the calculation proce-
dures. The potential evapotranspiration (PET) is estimated based on the
Thortnthwaite equation (Thornthwaite, 1948), instead of using other
complex equations requiring more inputs. Comparing the results
based on SPI and SPEI allows for examination on the compounding ef-
fects of temperature in modulating drought impacts.

We first remove the linear temporal trend of crop yield using the
least squares method to minimize the effects of slowly changing factors
(e.g. agricultural management) (Hlavinka et al., 2009; Lobell et al.,
2011). The five bi-variable copulas are then fitted to the de-trended
crop yield and growing season SPI for each crop-country combination.
We select the copula that has the highest statistically significant maxi-
mum likelihood as the best one (Sadegh et al., 2017), based on which
the probability of yield loss (i.e. yield dropping below its long-term
mean) under a given drought of specific severity is calculated. The sta-
tistical significance is estimated according to the two-tailed Student's
t-test.We obtained similar resultswhen usingBayesian Information Cri-
terion (BIC) (Schwarz, 1978) and Akaike Information Criteria (AIC)
(Akaike, 1981) as the evaluation metric.

The above analysis is repeated based on simulated crop yields by
crop models driven by global climate models for the historical period
(1961–2016) and future period (2071–2100) to explore future changes
in yield loss risk by the end of 21st century. We note that several
Fig. 1. Temporal changes in de-trended annual yield anomaly (blue line) and growing season SP
correlation coefficient (R) and statistical significance (P-value) are given.
reference periods have been used in climate change impact assessment,
such as 1980–2010 (Schewe et al., 2014), 1971–2000 (Haddeland et al.,
2014) and 1986–2005 (Lissner and Fischer, 2016). To examine the un-
certainty from the reference period is out of the scope of this study.
Rather, we tend to investigate the temporal change in the sensitivity
of yield loss risk to drought severity under global warming. The
RCP8.5 emission scenario is used to represent the upper bound of cli-
mate change impacts in the business-as-usual world.

3. Results

Global agricultural productivity has exhibited substantial variations
during the past decades, and crop yield reductions are often observed
when dry conditions occurred (Fig. 1). Overall, crop yield variability
can be explained by the drought index (i.e. SPI) for the study period.
Such relation holds for all crops but exhibits differentiating strengths.
Specifically, year-to-year variation of soybean shows the highest corre-
lationwith the drought index, followed by rice, wheat andmaize. This is
consistent with previous studies reporting larger impacts of precipita-
tion on rice and soybeans than wheat and maize (Lobell and Field,
2007). A substantial decrease up to 25% in crop yield is observed in
dry conditions (SPI b −0.8) as compared to wet conditions (SPI N 0.8).
The negative impact of drought on crop yields is in line with previous
studies at regional and global scales (Antwi-Agyei et al., 2012; Li et al.,
2009; Lobell et al., 2014; Richter and Semenov, 2005; Troy et al., 2015;
Zipper et al., 2016), although the magnitudes of estimations differ to
certain extent due to difference in the time period and dataset used. No-
tably, a large portion of yield variation cannot be explained by the
drought index, since several other factors influencing yield are not con-
sidered. Nevertheless, these results imply that occurrence of a drought
event may not necessarily lead to a reduction of yield, confirming the
importance of re-assessing the drought impacts in a probabilistic man-
ner, as pursued in this study.

We then fit the joint distribution function between crop yields and
SPI for the globe as a whole (Fig. 2). The Frank, Gumbel, Frank, and t
models are selected for global wheat, maize, rice and soybeans,
I (red bar) during 1961–2016 for global (a)wheat, (b)maize, (c) rice and (d) soybeans. The

http://droughtmonitor.unl.edu
http://droughtmonitor.unl.edu


Fig. 2. Joint distribution function fitted for global yield anomaly of (a) wheat, (b) maize, (c) rice and (d) soybeans and drought index (i.e. SPI). Each red circle denotes a pair of observed
yield anomaly and SPI, while the background colors represent the probability densities. There are 56 red circles for the period 1961–2016 in each subplot. The specific copula model
selected for each crop-region combination can be found in Table 5.
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respectively, while the probabilistic model used for other country-crop
combination is summarized in Table 5. The diverse model selections
among crops and regions indicate that the relationship between yield
anomaly and droughts depends on the region and crop of interest. Com-
paring the estimated probability distribution of yieldswith observations
(red dots) shows that the majority of observed yields fall well within
the high-density regions. Indeed, based on evaluationmetrics including
themaximum likelihood, Bayesian Information Criterion and Akaike In-
formation Criteria (see Methods), the probabilistic model developed in
this study is reliable for investigating crop yield responses to droughts of
various severity.

Based on the selected copulas, the conditional probability distribu-
tions of crop yields under dry and wet conditions are estimated
(Fig. 3). A consistent increase of yield loss likelihood is observed for all
crops fromwet to dry conditions, as indicated by the shift of probability
density curves to the left of long-term average. Under wet conditions,
Table 5
The best copula selected for each crop-region combination. The results for the top ten produci

Wheat Maize

Globe Frank Globe Gumbel
China Gumbel United States Clayton
United States Clayton China Gumbel
India Clayton Brazil Clayton
Russian Frank Mexico Gumbel
France Clayton Argentina Clayton
Canada Clayton France Clayton
Ukraine t India t
Turkey Frank Ukraine Gaussian
Australia Clayton Romania t
the probability of wheat yield loss (i.e. yield dropping below its long-
term average as indicated by the vertical dashed line) for the globe as
a whole is 41%, while the risk would increase by 17% to 58% when
experiencing a moderate drought. Similar changes in yield distribution
curves are found for maize, rice and soybean yields, exhibiting an in-
crease in yield loss probability by 22%, 9% and 22%, respectively.

How will yield loss risk change with increase in drought intensity?.
Here, the top 10 producing countries are selected for detailed analysis
(Fig. 4), since they are highly relevant for global food market and secu-
rity. Results for other small countries can be found in the Supplementary
Tables. Globally, wheat is more vulnerable to droughts than maize, rice
and soybeans, as indicated by the higher magnitude of yield loss proba-
bility under the four categories of droughts (i.e. moderate, severe, ex-
treme and exceptional droughts). Regionally, the probability of wheat
reduction is the highest in USA and Canada than other regions, and
there is N80% probability that wheat reduction may fall below its long-
ng countries for each crop are shown.

Rice Soybeans

Globe Frank Globe t
China Gaussian United States t
India Clayton Brazil Clayton

Indonesia Gumbel Argentina Frank
Bangladesh Clayton China Gaussian
Viet Nam Clayton India Frank
Thailand Gaussian Paraguay Frank
Myanmar Frank Canada Clayton
Japan Clayton Ukraine Gumbel

Philippines Gumbel Russian Gumbel



Fig. 3.Conditional probability distribution of yield changes (%) relative to its long-termmeanundermoderate drought (red) andwet (blue) conditions for (a)wheat, (b)maize, (c) rice and
(d) soybeans.
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term average when experiencing a drought at the exceptional category.
As for maize, India shows the highest risk of yield reduction under
droughts, while rice yield in Vietnam and Thailand are most vulnerable
to droughts. Risk of drought-driven soybean yield reduction is the
highest in USA, Russian and India, while relatively low risk is observed
in other countries. The physical mechanisms behind the distinct spatial
patterns are an open question since many factors could modulate
drought impacts on farmers' fields. One obstacle has been lack of data
on the physical and agronomical conditions that are relevant to crop
growth and yield at fine scales. For example, agricultural management
such as irrigation in US Great Plains can substantially modulate the re-
sponse of maize yield to precipitation anomaly (Leng, 2017a). Never-
theless, the drought risk for crop yield in global major agricultural
countries as revealed in this study provides valuable information for
targeted adaptation and mitigation.

Comparing yield loss risk amongmoderate, extreme, severe and ex-
ceptional droughts can also give us valuable insights into the sensitivity
of yield loss risk to the increase in drought severity. It is observed that
with increase in drought severity, yield loss risk tends to grow progres-
sively independent of crop types and regions. When drought severity
shifts frommoderate to exceptional, the USA and Canadawould experi-
ence an increase of wheat loss risk by 20%, while Romania, USA and
India show an increase in yield loss risk by 15%. India and Vietnam
show the largest increase of rice reduction risk by 20%when experienc-
ing a growth in drought severity from moderate to exceptional, while
yield loss risk remains relatively stable in Indonesia in response to
Fig. 4. The probability (%) of yield loss (i.e. yield dropping belowhistorical average)when exper
drought (red bar) for (a) wheat, (b) maize, (c) rice and (d) soybeans. The top 10 producing cou
gridded crop area percentage (Portmann et al., 2010), based on which weights are assigned to
increase in drought severity. The likelihood of soybean reduction in
Brazil would increase from 52% under a moderate drought to 71%
under an exception drought. Importantly, the rate of risk growth tends
to become lower with increase in drought severity. That is, the risk dif-
ference between severe and exceptional droughts is smaller than that
between moderate and extreme droughts. This trend suggests that
yield response to droughts is non-linearwith drought severity, implying
that yield loss risk under a drought category cannot be extrapolated for
estimation under droughts of other categories. The non-linear response
of yield loss risk to droughts implies that targetedmitigation and adap-
tation strategies should consider not only the crop type and region, but
also the drought severity of interest.

How will the likelihood of drought-induced yield loss change in the
future? Fig. 5 shows the projected yield loss risks under moderate, ex-
treme, severe and exceptional droughts simulated by 11 state-of-the-
art crop models driven by 5 climate models under RCP8.5 emission sce-
nario. Themulti-model ensemblemean gives estimates of yield loss risk
that is comparable to those based on observations (Fig. 4) not only in
the magnitude but also in the sensitivity of risk to drought severity, al-
though considerable bias remains (Table 6). However, large discrepancy
exists among crop models in simulating yield loss risk under droughts
not only in the magnitude but also in terms of its sensitivity to increas-
ingdrought severity. This could be due to the differences inmodel struc-
ture, representation of environmental stress, agricultural management,
and CO2 fertilization effect (Asseng et al., 2011; Elliott et al., 2015;
Folberth et al., 2016; Rosenzweig et al., 2014). Such a validation suggests
iencing amoderate (blue bar), extreme (yellow bar), severe (magenta bar) and exceptional
ntries for each crop are selected for illustration. The colored backgroundmap indicates the
gridded climate for spatial aggregations.
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Fig. 5. Projected changes in risk (%) of yield reduction in the future versus history as simulated by process-based cropmodels. Each dot represents the ensemblemean of risks simulated by
11 crop models under a given climate scenario, while the grey error lines indicate the corresponding uncertainties arising from crop models. The colors of dots represent the risk under
various levels of drought severity. Here, five climate scenarios and four drought severity categories are considered, and there are 5 × 4 = 20 dots in each subplot.
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that it is reasonable to use the ensemble of process-based crop model
simulations for assessing future changes in yield loss risk.

Projections based on the ensemble of crop models show that yield
loss risk will increase in the future, with the magnitude depending on
crop and severity of drought. The largest increase of yield loss risk is
found for rice, followed by soybeans, wheat and maize. Notably, an un-
even growth rate of yield loss risk is observed among the four drought
categories. For example, larger risk of wheat yield loss is projected
with increase in drought severity, while rice, maize and soybeans tend
to show less sensitivity to increasing drought severity in the future
(Fig. 5). Overall, drought-driven yield loss risk is projected to increase
Table 6
Projected yield loss risk by the end of 21st century versus historical period for global
wheat, maize, rice and soybeans.

Crop History (%) Future risk (%) Difference (%)

Wheat 56.97 66.40 9.43
61.78 72.33 10.55
63.97 75.26 11.29
66.05 78.41 12.36

Maize 56.21 61.82 5.61
62.62 68.91 6.29
66.34 72.74 6.40
70.63 76.98 6.34

Rice 50.25 69.67 19.42
55.42 74.77 19.35
58.06 76.91 18.86
60.40 78.49 18.10

Soybeans 57.48 73.63 16.16
64.08 79.82 15.74
67.09 82.75 15.66
70.31 85.48 15.17
by 9%–12%, 5.6%–6.3%, 18.1%–19.4% and 15.1%–16.1 for wheat, maize,
rice and soybeans, respectively, without considering adaptations or
CO2 fertilization effect. The substantial increase of yield loss risk points
to the need for effective adaptivemeasures for ensuring resilience in ag-
ricultural production in a warming climate with greater likelihood of
more frequent and severe droughts (Dai, 2013; Huang et al., 2017;
Sheffield and Wood, 2008).
4. Uncertainty and limitations

In this study, we develop a probabilistic model for estimating yield
loss risk given an individual drought of specific severity. Serval uncer-
tainty sources have to be acknowledged when interpreting the results
of this study. For example, five popular copula models were selected
to describe the dependency structure between yield and a drought
index. Inherent uncertainty from the copula model itself would propa-
gate and affect the estimation of yield loss risk under droughts. Here,
we use the Markov chain Monte Carlo simulation technique within a
Bayesian framework to infer the posterior distribution of copula param-
eters, based on which the uncertainty range arising from the copulas is
estimated (seeMethods). Fig. 6 shows the range between the lower and
upper bounds of estimated yield loss risk under droughts for the four
crops. Overall, the uncertainty is small compared to the estimated
yield loss risk, with themagnitude depending on the crop-country com-
bination of interest. Notably, the uncertainty magnitude tends to in-
crease with drought severity, suggesting that estimation of yield loss
risk under a moderate drought would be more reliable than those
under more severe drought categories.

It is well known that drought is driven by several other factors in-
cluding temperature, which is also critical for crop growth and yield



Fig. 6.Uncertainties for the estimation of yield loss risk under droughts of various severity for each crop-region combination. TheMarkov chainMonte Carlo simulation technique is used
within a Bayesian framework to derive the uncertainty based on the posterior distribution of copula parameters.
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(Lobell et al., 2013; Lobell et al., 2014). Here, additional sensitivity anal-
ysis is conducted using a new drought index (i.e. SPEI) that accounts for
the effects of temperature. As shown in Fig. 7, difference is observed be-
tween SPI- and SPEI-based yield loss risks. This difference suggests that
drought-driven yield loss risk does depend on the definition of drought.
Specifically, inclusion of temperature effects leads to considerable dif-
ference in the estimated yield loss risk of wheat and maize. However,
the results remain largely similar for rice and soybean in response to
SPI- and SPEI-based droughts. This could be attributed to the fact that
rice and soybean are more sensitive to precipitation than temperature
(Lobell and Field, 2007). Thus, consideration of temperature leads to
minor change in the estimated yield loss risk under droughts. Besides
climate factors, crop yieldswould be influenced by agriculturalmanage-
ment such as irrigation (Leng et al., 2014; Müller et al., 2018) and fertil-
ization (Leng et al., 2016; Müller et al., 2018; Stewart et al., 2005),
conservation tillage (Karlen et al., 2013), multiple cropping (Seifert
and Lobell, 2015), tile drainage (Schilling and Libra, 2003) and soil
mulching (Qin et al., 2015). In addition, the CO2 fertilization effects
tend to be beneficial for crop growth, but remain a large source of uncer-
tainty (Schleussner et al., 2018). To which extent these compounding
factors would reduce or amplify drought impacts on crop yield is not
within the scope of this study, especially given the lack of detailed infor-
mation and incomplete knowledge of the complex mechanisms behind
yield variations.

We also acknowledge that the 11 process-based crop models and 5
climatemodels used in this studymay not represent the full uncertainty
range in the projection of future yield loss risk. In addition, future pro-
jections are conditional on the assumption of no adaptations, and thus
may not be able to indicate the true future course of yield impacts.
Therefore, future yield loss risks should not be interpreted as the correct
magnitude of climate change impacts. Rather, the results are intended
to provide a measure of the temporal evolution of yield loss risk under
a warming climate, which has received little attention. Understanding
the potential changes in the sensitivity of yield loss response to drought
is a critical step towards planning and prioritizing effective adaptation
options.

5. Summary and conclusion

This study provides a complementary method for assessing drought
impact on global crop yields. Through developing a probabilistic model,
we estimate yield loss risks (i.e. the probability of yield dropping below
its long-term mean) under moderate, extreme, severe and exceptional
droughts. Results show a significant association between droughts and
yield reductions during the past decades. When experiencing an excep-
tional drought, the probability of yield loss could exceed 70% for soy-
bean and maize, while the risk for wheat and rice is up to 68% and
64%, respectively. This prediction represents an increase of yield loss
risk by 24%, 21%, 18% and 20% for soybean, maize, rice and wheat, re-
spectively, when drought severity grows from moderate to the excep-
tional category. Notably, the rate of risk growth tends to become
slower with increase in drought severity, suggesting the non-linear



Fig. 7. SPI-based yield loss risk versus SPEI-based yield loss risk for (a) wheat, (b)maize, (c) rice and (d) soybean. The top 10 producing countries are selected for illustrationwith each dot
denoting a country,while the color represents the drought severity. Themoderate, severe, extreme and exceptional droughts are indicatedwith blue, green,magenta and red, respectively.
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response of yields to droughts. Regionally, the risk of drought-driven
wheat reduction is the highest in USA and Canada, where there is
N80% probability that wheat reduction may fall below its long-term av-
erage given an exceptional drought. As for maize, India shows the
highest risk of yield reduction, while rice yield in Vietnam and
Thailand are most vulnerable to droughts. Risk of soybean yield reduc-
tion is the highest in USA, Russian and India, while relatively low risk
is observed in other regions. Further analysis based on 11 process-
based model simulations shows that yield loss risk will increase in the
future, with the largest growth found for rice followed by soybeans,
wheat and maize.

Enhancing the resilience of agricultural system to droughts would
greatly benefit from improved understanding of the full range of possi-
ble outcomes of crop yields under a drought of specific severity. The in-
sights abstained in this study enable more targeted efforts to manage
drought risk, through adaptations of agricultural and water manage-
ment practices, spatial diversification of crop production and the design
of insurance instruments. The non-linear yield response to the increase
in drought severity implies that future adaptations should be more
targeted, considering not only the crop type and region but also the
drought severity of interest.
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