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[1] Different explanations have been proposed as to why the
range of climate sensitivity predicted by GCMs has not
lessened substantially in the last decades, and subsequently if it
can be reduced. One such study (Why is climate sensitivity so
unpredictable?) addressed these questions using rather simple
theoretical considerations and reached the conclusion that
reducing uncertainties on climate feedbacks and underlying
climate processes will not yield a large reduction in the
envelope of climate sensitivity. In this letter, we revisit the
premises of this conclusion. We show that it results from a
mathematical artifact caused by a peculiar definition of
uncertainty used by these authors. Applying standard
concepts and definitions of descriptive statistics to the exact
same framework of analysis as Roe and Baker, we show that
within this simple framework, reducing inter-model spread on
feedbacks does in fact induce a reduction of uncertainty on
climate sensitivity, almost proportionally. Therefore, following
Roe and Baker assumptions, climate sensitivity is actually
not so unpredictable. Citation: Hannart, A., J.-L. Dufresne, and

P. Naveau (2009), Why climate sensitivity may not be so unpredictable,

Geophys. Res. Lett., 36, L16707, doi:10.1029/2009GL039640.

1. Introduction

[2] Uncertainties in projections of future climate change
described in the last Assessment Report of the IPCC [Inter-
governmental Panel on Climate Change, 2007] are high, as
illustrated by the broad range of climate sensitivity - defined
as the global mean temperature increase for a doubling of
CO2 - simulated by general circulation models (GCMs).
Attempts to explain this fact have focused mainly on uncer-
tainties in our understanding of the individual physical
feedback processes, difficulties to represent them faithfully
in GCMs, nonlinearity of some processes and complex
interactions among them giving rise to a chaotic behaviour
of the climate system [Randall et al., 2007]. A review of these
explanations is given by Bony et al. [2006]. Nevertheless, in
this letter, we leave aside these considerations to focus our
interest solely on the explanation proposed by Roe and Baker
[2007] (hereinafter referred to as RB07) which somewhat
differ from the above-mentioned. This study uses the frame-
work of feedback analysis, which was often used to describe
the relationship between physical processes and climate
sensitivity (see for instance Lu and Cai [2008], Dufresne
and Bony [2008], and Soden and Held [2006]). This frame-

work assumes a linear approximation of radiative feedbacks,
resulting in a simple relationship between a global feedback
gain f and climate sensitivity DT. In this classic setting, the
main originality of RB07 approach consists in analyzing
explicitly the way uncertainties on f, due to a limited
understanding of their underlying physical processes, prop-
agates into uncertainties on DT: assuming f is a random
variable with mean f and standard deviation sf, RB07 uses
this simple probabilistic model to highlight several funda-
mental properties of uncertainty propagation from feedbacks
to climate sensitivity. The most prominent conclusion of this
analysis is that reducing uncertainties on f does not yield a
large reduction in the uncertainty of DT, and thus that
improvements in the understanding of physical processes
will not yield large reductions in the envelope of future
climate projections. This conclusion, if true, would clearly
have crucial implications for climate research and policy.
[3] In section 2, we revisit the premises of RB07 conclusion.

We highlight that it is the result of a peculiar way of defining
uncertainty. Moreover, we show in section 5 that this conclu-
sion is a mathematical artifact with no connection whatsoever
to climate. Since the basic question of the definition of
uncertainty appears to be at stake, section 3 briefly recalls
widely used definitions and elementary results on uncertainty
and its propagation as can be found in Descriptive Statistics
textbooks. In section 4, we apply these standard definitions to
the exact same framework of analysis as RB07. We show that
within this framework, reducing inter-model spread on feed-
backs does in fact induce a reduction of uncertainty on climate
sensitivity, almost proportionally. Finally, section 6 concludes.

2. Overview of RB07 Approach

[4] RB07 uses the feedback analysis framework. Denot-
ing DT0 the Planck temperature response to the radiative
perturbation and f the feedback gain (RB07 refers to it as
feedback factor), they obtain:

DT ¼ DT0

1� f
ð1Þ

RB07 then assumes uncertainty on Planck response to be
negligible so that the entire spread on DT results from the
uncertainty on the global feedback gain f. To model this
uncertainty, RB07 assumes that f follows a Gaussian
distribution with mean f , standard deviation sf and implicit
truncation for f > 1 (Appendix A1). Then, they derive an
exact expression of the distribution of DT. This simple
probabilistic climatic model is used by RB07 to analyze the
way uncertainties on f, due to a limited understanding of
underlying physical processes, propagates into uncertainties
onDT. Their analysis highlights two fundamental properties:
[5] 1. Amplification: The term in 1

1�f
in equation (1)

amplifies uncertainty on feedbacks, all the more intensely as
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f is close to (though lower than) one. Small uncertainties on
feedbacks are thus converted in large uncertainties on the
rise of temperature.
[6] 2. Insensitivity: Quoting RB07, ‘‘reducing uncertainty

on f has little effect in reducing uncertainty on DT’’, also
stated as ‘‘the breadth of the distribution of DT is relatively
insensitive to decreases in sf .’’
[7] We fully subscribe to the first property and elaborate

further on it in section 4. However, we are puzzled by the
second property, that is, the claimed insensitivity of uncer-
tainty on DT to uncertainty on feedbacks. The reason why
one may find this second assertion puzzling, is that it
intuitively seems to contradict the first. Indeed, if small
uncertainties on f are amplified into large uncertainties on
DT, it suggests that a strong dependency exists between

both uncertainties, rather than no or little dependency. We
therefore dig into the details of RB07 argumentation re-
garding this assertion. To get to that conclusion, RB07
actually focus on the probability of large temperature
increase defined as P(DT 2 [4.5�C, 8�C]). They study
graphically how this probability fluctuates with the level
of uncertainty on feedbacks, by plotting the cumulative
distribution of DT for several values of sf. Doing this
graphical analysis, they observe that P(DT 2 [4.5�C,
8�C]) is insensitive to sf. This observation is easily verifi-
able: we replicated RB07 cumulative distribution chart in
Figure 1c, and we computed several values of P(DT 2
[4.5�C, 8�C]) for f = 0.65 and sf ranging from 0.10 to 0.20,
finding it to fluctuate between 0.18 and 0.20. Therefore, in
agreement with RB07, it is fair to say that the probability of
large temperature increase is quite insensitive to sf in this
domain. However, concluding from this observation that
‘‘the breadth of the distribution of DT is relatively insensi-
tive to decreases in sf ’’ implicitly assumes two very
different definitions of uncertainty: while on the side of
feedback the uncertainty is measured by standard deviation
sf , on the side of sensitivity the probability P(DT 2 [4.5�C,
8�C]) is used as a metric of uncertainty. As will be
developed in section 3, standard deviation is a standard,
consensual uncertainty metric but the probability to lie in a
fixed interval is not. While under this peculiar double
definition of uncertainty RB07 conclusion holds, it is fair
to ask whether it would still hold with a different uncer-
tainty metric for DT; second, whether the probability to lie
in a fixed interval can be considered an acceptable measure
of distribution breadth; and third, what are the implications
of using such an asymmetric definition of uncertainty. The
following sections attempt to answer these questions.

3. Standard Measurement and Propagation of
Distribution Spread

[8] To investigate the first question, which relates to the
basic issue of defining uncertainty, we briefly recall a few
standard definitions and concepts, as they can be found
almost identically in most Descriptive Statistics textbooks.
For details, the reader can refer for instance to Barlow
[1989], Reinard [2006], and James and Eadie [2006] to
mention but a few such textbooks.
[9] Descriptive Statistics provide metrics summarizing a

sample of observations and, in probabilistic terms, the
probability density function (pdf) underlying them. Techni-
cally, the correspondence between both is simply that a
sample summary is an estimator (a function of the data)
which estimates a pdf summary estimand (a function of its
parameters). Metrics are usually grouped under three cate-
gories: location, scale and shape parameters. The so-called
location parameters are meant to identify the center of a
distribution. The most common location measures are mean,
mode and median. The so-called scale parameters, also
referred to as dispersion, variability, variation, scatter or
spread measures, describe how far from the above-defined
center possible values covered by the distribution tend to be.
This second group of metrics is the one we are interested in
for our discussion, as it is concerned with the measurement
of distribution spread. The most common measures are
standard deviation, interquartile range (IQR), range or

Figure 1. Feedback gain f is truncated Gaussian N (Mf,
sf ) as by RB07. X is centered Gaussian N (0, SX). (a) Pdf of
DT with Mf = 0.65 and sf = 0.20, 0.15, 0.10. Arrows
represent the decreasing sensitivity spread SDT obtained for
decreasing values of sf. (b) Climate sensitivity spread SDT

as a function of feedback spread Sf, for Mf = 0.60, 0.65,
0.70. Feedback spread Sf is measured by standard deviation
(’sf) but climate sensitivity spread SDT is measured by
IQR (see Appendix A1 for explanation). (c) Cdf of DT.
Arrows represent the stable probability P(DT 2 [4.5�C,
8�C]) obtained for decreasing values of sf = 0.20, 0.15,
0.10. (d) Probability P(DT 2 [4.5�C, 8�C]) as a function of
feedback spread Sf measured with standard deviation.
(e) Probability for X to exceed respectively 1 and 3, as
functions of spread SX. (f) Probability for X to fall within
interval [1, 3] as a function of spread SX.
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median absolute deviation (MAD), more rarely full width at
half maximum (FWHM); they are dimensionally homoge-
neous to the variable. Variance and coefficient of dispersion
are commonly used inhomogeneous spread measures. The
cited references give complete expressions, properties,
strengths and limitations of these measures. We underline
a property of interest to our discussion: homogeneous
spread measures are invariant in translation and linear in
scale. In other words, denoting SX any measure of spread, X
a random variable and Y = aX + b then:

SY ¼ jaj : SX ð2Þ

Further, in the general case of a dependency of type Y =
f(X):

SY ’ jf0 MXð Þj : SX ð3Þ

where f0 represents the first derivative of f and M is a
location parameter. This linear approximation is commonly
used to combine errors onmeasurements, though generally in
its multivariate formulation, and is thus sometimes referred to
as the error propagation framework. It may also be used to
study the way uncertainty on some input variable(s)
propagates into uncertainty on an output obtained from a
determinist function, as in section 4.

4. Standard Propagation of Feedback
Uncertainty in RB07 Model

[10] We now analyze the dependency between uncertainty
on feedbacks and uncertainty on climate sensitivity in the
RB07 model. Denoting SDT a measure of climate sensitivity
spread, Sf a measure of feedback spread andMf a measure of
feedback location, the uncertainty propagation formula (3) is
applied to equation (1) leading to:

SDT ’ DT0

1�Mf

� �2 : Sf ð4Þ

Equation (4) holds for any choice of pdf for feedback gain
f and thus applies more generally than in the particular case
of a truncated Gaussian pdf chosen by RB07. It provides a
simple relationship between SDT, Sf and Mf which translates
into the following two properties:
[11] 1. Amplification: In agreement with RB07 first

above recalled result, for a fixed level of feedback uncer-
tainty Sf , the level of sensitivity uncertainty SDT is
amplified when feedback Mf approaches one. Since esti-
mates of feedback parameters in CMIP3/AR4 models
[Soden and Held, 2006; Randall et al., 2007] suggest Mf

is close enough to one (Mf ’ 0.65), it seems that ‘‘the
climate system is operating in a regime in which small
uncertainties in feedbacks are amplified in the resulting
climate sensitivity uncertainty’’, to quote RB07.
[12] 2. Proportionality: In disagreement with RB07 sec-

ond above recalled result, for a fixed level of average
feedback Mf, the level of climate sensitivity uncertainty
SDT is proportional to the level of feedback uncertainty Sf .
This proportionality between uncertainties is intuitive. In-
deed, when Sf = 0, feedbacks are determinists and DT also

is, considering no other source of uncertainty in the climate
system, hence SDT = 0. As values of f get increasingly
scattered, resulting values of climate sensitivity also get
more scattered proportionally (Figures 1a and 1b).
[13] This proportionality has general validity in the sense

that it holds for any homogeneous spread measure and for
any distribution of f. However, it is an approximation for
small values of Sf: we therefore analyzed how this linear
dependency is affected when Sf increases. In this purpose,
we exhibit more precise results on uncertainty propagation
in the RB07 model. First, when spread is measured by IQR,
an exact relationship holds for any value of Sf and any
distribution of f (Appendix A2):

SDT ¼ DT0

1�Mf

� �2 Sf : 1� wf

1�Mf

Sf �
1� w2

f

4 1�Mf

� �2 S2f

( )�1

ð5Þ

where wf measures the asymetry of f distribution. Hence,
when S 
 IQR, the dependency is overlinear when f has a
symetric or right skewed pdf. Otherwise, the dependency is
sublinear for small values of Sf but becomes overlinear
when Sf is large enough. Second, when spread is measured
by standard deviation, a second order Taylor expansion of
equation (1) leads to a more accurate approximation
(Appendix A3):

SDT ’ DT0

1�Mf

� �2 Sf : 1þ 2wf

1�Mf

Sf þ
kf � 1

1�Mf

� �2 S2f

( )1
2

ð6Þ

Again, overlinearity prevails when wf � 0 or Sf large
enough. Third, when S is standard deviation and f
distribution is log-normal, an exact formula holds for any
Sf :

SDT ¼ DT0

1�Mf

� �2 : Sf : 1þ Sf

1�Mf

� �2( )
ð7Þ

and is again overlinear. Finally, overlinear relationships can
also be derived when the distribution of f is assumed to be
gamma or beta (Appendix A4).
[14] To summarize the above discussion, its main out-

come is rather intuitive and has actually nothing to do with
climate: if the spread of feedback gain values decreases, the
resulting spread of climate sensitivity values also decreases.
Second, the dependency is linear for small feedback spreads
and tends to get overlinear for larger values. Last, the
proportionality coefficient sharply increases as feedback
intensifies.

5. Properties of the Probability to Lie in a
Fixed Interval

[15] We now focus on whether the probability to lie in a
fixed interval can be considered an acceptable measure of
distribution breadth, as implicitly done by RB07 to reach
their main conclusion. We approach this question very
generally: let X be a continuous random variable with
location MX and spread SX and let [a, b] be a fixed interval
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near but above the center (MX < a < b). When SX ! 0 the
variable becomes determinist (X = MX) hence P(X 2 [a, b])
equals to zero. When SX ! +1 the distribution covers such
a wide range of values that P(X 2 [a, b]), the relative weight
of interval [a, b], decreases to zero (Appendix A5). Hence
the dependency between P(X 2 [a, b]) and SX is character-
ized by a non monotonous function that increases, flattens
and then decreases to zero (Figure 1f). In light of this non
monotonous dependency, it is difficult to hold P(X 2 [a, b])
as a valid measure for the width of X distribution. Further,
the observed insensitivity of P(DT 2 [4.5�C, 8�C]) to
feedback spread Sf, which lead authors to their conclusion,
happens to proceed directly from the above described
dependency: this flattening of the dependency is a pure
mathematical artifact which systematically manifests under
these definitions, and has nothing to do with climate.
[16] Finally, if one still wants to stick to this peculiar,

asymetric definition of uncertainty, it has to be noted that in
the RB07 model, even though the dependency is flat in the
domain Sf 2 [0.1, 0.2], the dependency is strong for Sf < 0.1
when Mf � 0.65 and subsequently leads to a steep decrease
of P(DT 2 [4.5�C, 8�C]) to zero (Figure 1d). In fact, since
feedback current estimates suggest Sf ’ 0.09 and Mf � 0.65
[Soden and Held, 2006; Randall et al., 2007], the domain of
strong dependency may actually already be reached to date.

6. Conclusion

[17] Developments in section 5 suggest that, while the
probability P(DT 2 [4.5�C, 8�C]) may be of interest practi-
cally, this metric is irrelevant to describe ‘‘the breadth of the
distribution of climate sensitivity’’ which was RB07 explicit
intent. To address this question, any measure of distribution
spread chosen amongst those classically used in Descriptive
Statistics and recalled in section 3, appear to us more appro-
priate. With such measures of spread, we showed in section 4
that in RB07 framework, when the spread of feedback
parameter Sf decreases, the resulting spread of climate sensi-
tivity SDT values also decreases. Further, we also highlighted
that in this framework, the decrease is approximately linear for
Sf small and tends to be steeper for larger values of Sf .
[18] Other than the definition issue pointed here, the

relevance of RB07 simplified model may also be discussed
but this was beyond the scope of this letter. In any case, if
one holds this model to be accurate, a decrease of the spread
on feedback will lead to a decrease of the uncertainty on
climate sensitivity and a narrowing of the envelope of future
climate projections. If enough studies are undertaken to
better understand involved physical processes, neither are
doomed to remain at their current level.

Appendix A

A1. Implications of the Truncation

[19] Since the linear feedback model of RB07 implicitly
assumes f � 1, the Gaussian distribution N (f , sf) proposed
by RB07 is implicitly truncated for f > 1. This truncation
has several implications. First, sf (resp. f ) does not exactly
match standard deviation (resp. mean) of the truncated
distribution. For instance, when (f , sf) = (0.75, 0.25) the
mean of f equals 0.67 and its standard deviation equals 0.18.
Second, it introduces some negative skewness in the distri-

bution of f (�0.39 in the same example). Finally, since the
truncated Gaussian pdf is finite and non zero in f = 1, the
obtained pdf of climate sensitivity behave as a Pareto
distribution in O (DT�2) for high values and does not have
a finite mean nor a finite variance. Hence, the truncated
Gaussian model of RB07 forbids the use of standard
deviation as a measure of climate sensitivity spread, which
explains the use of IQR in Figure 1. For the purpose of
RB07 which is to study climate sensitivity spread, assuming
a parametric distribution of f - such as log-normal, gamma
or beta - which leads to finite mean and deviation for
sensitivity and exact mathematical expressions of the de-
pendency between the deviation of DT and the deviation of
f would be in our view more convenient. However, results
presented in section 4 are general and also hold for this
truncated Gaussian. Therefore, RB07 truncated Gaussian is
in our view inconvenient but it does not affect the main
features of uncertainty propagation described in this letter.

A2. Exact Uncertainty Propagation Equation
for IQR

[20] If X is a continuous random variable X, we denote Xa
its a-quantile, SX = X0.75 � X0.25 its interquartile range,

MX = X0.50 its median and wX = X0:75þX0:25�2X0:50

X0:75�X0:25
the so-called

quartile skewness coefficient. We thus have X0.75 = MX +
1
2
SX(1 + wX) and X0.25 = MX � 1

2
SX(1 � wX). Since when F

is a diffeomorphism, we also have [F(X)]a = F(Xa), hence
from equation (1):

SDT ¼ DT0:75 �DT0:25 ¼
DT0

1� f0:75ð Þ �
DT0

1� f0:25ð Þ

¼ DT0

1� f0:75ð Þ 1� f0:25ð Þ Sf

¼ DT0

1�Mf

� �2 Sf : 1� wf

1�Mf

Sf �
1� w2

f

4 1�Mf

� �2 S2f

( )�1

A3. Second Order Term in Uncertainty
Propagation Equation

[21] A second order term Taylor expansion of f about
MX is Y ’ f(MX) + f0(MX) (X � MX) + 1

2
f00(MX) (X �

MX )
2. When the chosen spread measure S is standard

deviation, calculations can be performed explicitly:

SY ’ jf0 MXð Þj : SX :

(
1þ f00 MXð Þ

f0 MXð Þ wX

� �
SX

þ f00 MXð Þ2

4f0 MXð Þ2
kX � 1ð Þ

" #
S2X

)1
2

ðA1Þ

Applying equation (A1) to model (1), equation (6) follows.

A4. Exact Uncertainty Propagation Equations
for Standard Deviation

[22] Since the domain of value of f in the RB07 model
is ]�1, 1], we assume single tailed distributions defined
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on this support to avoid a truncation and make mathematical
developments more convenient. For several usual distribu-
tions, the relationship between SDT and Sf can be explicated.
Assuming a log-normal distribution with pdf 1

1�fð Þs
ffiffiffiffi
2p

p

exp [� ln 1�fð Þ�mð Þ2
2s2 ], mean Mf = 1 � em+

s2
2

and variance

Sf
2 = e2m+s

2

(es
2 � 1) we obtain SDT

2 = DT0
2. e�2m+s2

(es
2 � 1).

Recombining:

SDT ¼ DT0

1�Mf

� �2 : Sf : 1þ Sf

1�Mf

� �2( )
ðA2Þ

Assuming a gamma distribution with pdf (1 � f )k�1

exp � 1�fð Þ=qð Þ
G kð Þqk , mean Mf = 1 � kq and variance Sf

2 = q2k, we
obtain SDT

2 = DT0
2. [q2(k � 1)(k � 2)]�1. Recombining:

SDT ¼ DT0

1�Mf

� �2 : Sf : 1� Sf

1�Mf

� �2( )�1

: 1þ Sf

1�Mf

� �2( )�1
2

ðA3Þ

Assuming a beta distribution with pdf
G 2kð Þ
qG kð Þ2 (1 � 1�f

q )k�1

(1�f
q )k�1 on [1� q, 1], meanMf=1� q

2
and variance Sf

2 = q2 [8k
[8k + 4]�1, we obtain SDT

2 =DT0
2. [k(2k� 1)]. [q2 (k� 1)2(k�

2)]�1. Recombining:

SDT ¼ DT0

1�Mf

� �2 : Sf : 1� Sf

1�Mf

� �2( )1
2

1� 2
Sf

1�Mf

� �2( )1
2

� 1� 3
Sf

1�Mf

� �2( )�1

1� 5
Sf

1�Mf

� �2( )�1
2

ðA4Þ

A5. Dependency Between Spread and Probability
Weight of an Interval

[23] Assume U is a random real variable with pdf p(u),
cdf P(u), center M and spread one. For S > 0, we introduce
X = S.(U�M) +M which has pdf 1

S
p(x�M

S
+M), cdf P(x�M

S
+

M), center M and spread S. To analyze the dependency

between S and the probability to lie in [a, b] we study F(S) =
P(X 2 [a, b]). F can be expressed by F(S) = P(b�M

S
+ M) �

P(a�M
S

+M); henceF(0) =P(�1)� P(�1) = 0 and F(+1) =
P(M) � P(M) = 0.
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