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Review

Is there an isotopic signature  
of the Anthropocene?

Jonathan R Dean,1 Melanie J Leng1,2 and  
Anson W Mackay3 

Abstract
We consider whether the Anthropocene is recorded in the isotope geochemistry of the 
atmosphere, sediments, plants and ice cores, and the time frame during which any changes are 
recorded, presenting examples from the literature. Carbon and nitrogen isotope ratios have 
become more depleted since the 19th century, with the rate of change accelerating after ~ad 
1950, linked to increased emissions from fossil fuel consumption and increased production of 
fertiliser. Lead isotope ratios demonstrate human pollution histories several millennia into the 
past, while sulphur isotopes can be used to trace the sources of acid rain. Radioisotopes have 
been detectable across the planet since the 1950s because of atmospheric nuclear bomb tests and 
can be used as a stratigraphic marker. We find there is isotopic evidence of widespread human 
impact on the global environment, but different isotopes have registered changes at different 
times and at different rates.
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Introduction

The Anthropocene, the term used informally to denote the current interval where humans have 
become a dominant force of global environmental change (Crutzen, 2002; Crutzen and Stoermer, 
2000), is contentious. There is no doubt that humanity has left its mark on the planet. For example, 
humans now transport more soil and rock around the surface of the Earth than natural processes do 
(Wilkinson, 2005), CO2 levels have risen dramatically to the highest levels seen in at least 800,000 
years (Keeling et al., 2005; updated: http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.
csv; Lüthi et al., 2008) and humanity is implicated in causing rates of species extinctions to increase 
well beyond background levels (Barnosky et al., 2011). Consequently, a working group of the 
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International Commission on Stratigraphy is set to present its preliminary findings in 2016 on 
whether the Anthropocene is distinctive and enduring enough to be defined as a new epoch and if 
so where the Holocene–Anthropocene boundary should be set (Foley et al., 2013; Gale and Hoare, 
2012; Vince, 2011; Zalasiewicz et al., 2011). Ruddiman (2003, 2013) and Ruddiman et al. (2011, 
2014) have argued the Anthropocene started in the early to mid Holocene, when they suggest land 
clearance and agriculture initiated changes in the composition of the atmosphere. Crutzen and 
Stoermer (2000), Crutzen (2002) and Steffen et al. (2011) have suggested a later date, in the late 
18th or early 19th centuries, associated with the Industrial Revolution in Northern Europe. 
Alternatively, a ‘Great Acceleration’ in human impacts on the global environment has been sug-
gested to have occurred ~ad 1950 (Steffen et al., 2007) and it has been proposed the Anthropocene 
could be defined as starting around this time (Zalasiewicz et al., 2014).

There is an urgent need to understand the impact humans have had on the global environment 
and when changes occurred. This review concentrates on wide-scale anthropogenic impact as 
recorded by isotope data from natural archives. Isotopes are different types of an element: they 
have the same number of protons but a different number of neutrons (e.g. Hoefs, 2009; Sharp, 
2007). The ratio of one isotope of an element to another can vary through time depending on a host 
of environmental factors, meaning changes in isotope ratios can be used to reconstruct changes in, 
for example, climate, pollution and the composition of the atmosphere. In this review, we have 
selected the isotopes that previous studies have highlighted as important in tracking human impacts 
on the global environment. We show how isotopes record heavy metal contamination linked to 
technological innovations from Greek and Roman times onwards (lead isotopes), late-Holocene 
forest clearance and widespread fossil fuel burning since the onset of the Industrial Revolution 
(carbon isotopes), increased production and use of artificial fertilisers (nitrogen isotopes), acid rain 
(sulphur isotopes) and atmospheric nuclear weapons testing (caesium and plutonium isotopes). We 
consider how isotopes could contribute to the debate on where to set the Holocene–Anthropocene 
boundary.

Notation and standardisation of stable isotope data are summarised in Sharp (2007) and Hoefs 
(2009). δ13C represents the ratio of 13C/12C and δ15N the ratio of 15N/14N and are given in per mil 
(‰) relative to VPDB and AIR respectively. δ34S represents the ratio of 34S/32S and is given in ‰ 
relative to VCDT. Lead isotopes are measured against a variety of standards as reviewed in 
Komárek et al. (2008). The abundance of 14C (Δ14C) in a sample is given in ‰ relative to NIST 
oxalic acid activity corrected for decay (Stuiver and Polach, 1977). The abundance of radioiso-
topes such as 137Cs and 239,240Pu are measured in becquerel (Bq), with one Bq representing one 
decay per second (L’Annunziata, 2012).

Changes in the global carbon cycle

Human activity has altered the concentration and isotopic composition of the gases in the atmos-
phere. Rises in atmospheric methane (CH4) and carbon dioxide (CO2) are captured in gas bubbles 
in ice cores (e.g. MacFarling Meure et al., 2006; Rubino et al., 2013) ~5000 years ago and ~8000 
years ago, respectively. Ruddiman (2003, 2013) and Ruddiman et al. (2011, 2014) have argued 
these increases were caused by humans, and this has led to the Early Anthropogenic Hypothesis, 
which argues anthropogenic effects on global climate began millennia ago and had it not been for 
human-induced greenhouse gas increases leading to global warming the climate would have cooled 
substantially during recent millennia. A key part of their argument involves using carbon isotopes 
to trace the origins of these increases in CH4 and CO2 to wetland expansion, linked to rice produc-
tion, and to widespread forest clearance. δ13C of atmospheric CH4 (δ13CH4) from ice core bubbles 
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from the late Holocene have values ~−47‰ to −49‰ (Ferretti et al., 2005; Mischler et al., 2009). 
While some argue that these low values of δ13CH4 could be explained by increased delivery of 
depleted (more negative) carbon from natural wetlands (e.g. Schmidt et al., 2004), Ruddiman et al. 
(2011) contend this would have been unlikely because of the drying in the late Holocene of north-
ern monsoonal regions and the cooling of boreal regions, which would have reduced, not increased, 
CH4 emissions of natural wetlands. Rather, they suggest that δ13CH4 data could be explained by 
human emissions, with the observed mean of −48‰ satisfied by emissions from rice paddies 
(−63‰) and livestock (−60‰) and anthropogenic burning of grasses (−25‰). In terms of CO2, 
Elsig et al. (2009) argue that the very small decrease in the δ13C of atmospheric CO2 (δ13CO2) in 
the mid to late Holocene (before the Industrial Revolution), as atmospheric CO2 concentrations 
were rising, would limit the net terrestrial contribution to atmospheric CO2 during the last 7000 
years to only ~5 ppm. Instead, there could have been large releases of CO2 from the oceans 
(Broecker et al., 1999; Ridgwell et al., 2003). However, Ruddiman et al. (2011) argue that Elsig 
et al. (2009) underestimate carbon burial in boreal peat, and if burial in peat over the last 7000 
years was greater than Elsig et al. (2009) calculated then it would require far greater anthropogenic 
emissions, via forest clearance, to balance the δ13CO2 budget. The complexities of the carbon cycle 
mean the debate vis-à-vis the relative importance of human versus natural sources and sinks of 
carbon is complicated, and many researchers (e.g. Steffen et al., 2011) dismiss the plausibility of 
the Early Anthropogenic Hypothesis, but it is clear carbon isotopes are a key part of this debate.

As recorded in direct measurements from the atmosphere, in gas bubbles trapped in ice cores 
and in natural archives including tree rings (February and Stock, 1999; Stuiver and Quay, 1981), 
corals (Nozaki et al., 1978; Swart et al., 2010), foraminifera (Al-Rousan et al., 2004; Black et al., 
2011) and marine molluscs (Butler et al., 2009), there has been a more substantial change in the 
δ13CO2 of the atmosphere since the 19th century, with the trend to lower values through the 19th 
century accelerating after ~ad 1950 (Figure 1), at the time of increased fossil fuel consumption that 
followed the Second World War (Steffen et al., 2007). The changes in δ13C are of a different mag-
nitude and the absolute values are different in tree rings, corals, foraminifera and direct measure-
ments of the atmosphere or of gas bubbles in ice. This is because as organisms use carbon during 
growth, they preferentially take up one isotope over another, causing a change in the δ13C from the 
source, a process known as fractionation (e.g. Hoefs, 2009; Sharp, 2007). However, assuming this 
fractionation is constant through time, it is still possible to track changes in the composition of the 
atmosphere using tree rings, corals and foraminifera. The classic graph from Mauna Loa shows 
δ13CO2 declining (−7.6‰ in 1980 to −8.3‰ in 2011) as CO2 concentrations in the atmosphere have 
risen (316 ppm in 1959 to 396 ppm in 2013) (Figure 2) (Keeling et al., 2005; updated: http://scripp-
sco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv). There was also a decline in the amount of 14C 
in atmospheric CO2 (Δ14CO2) in the first half of the 20th century (Levin et al., 2010; Stuiver and 
Quay, 1981), before the trend was interrupted in the 1950s and 1960s, followed by a decline again 
to the present day (Levin et al., 2013). These declines in δ13CO2 and Δ14CO2 (called the Suess 
Effect; Keeling, 1979; Suess, 1955) are linked to the burning of fossil fuels. Fossil fuels, such as 
the vast coal deposits of the Carboniferous period, are composed of the organic remains of organ-
isms (mainly plants) that lived millions of years ago. Plants preferentially take up 12C over 13C so 
have low δ13C (e.g. Farquhar et al., 1989), with most oil deposits having values of −32‰ to −21‰ 
and coal deposits −26‰ to −23‰ (Sharp, 2007). Consequently, CO2 from fossil fuels contains on 
average 2% less 13C per mole than atmospheric CO2 (Keeling, 1979). Extraction and burning of 
these fossil fuel reserves releases this 12C-enriched carbon back into the atmosphere, leading to a 
decline in δ13CO2. Old carbon from fossil fuels is also virtually free of 14C (Keeling, 1979), since 
the time between being deposited in the fossil record and burning is many thousands of half-lives 
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of 14C, so the release of this old carbon will lead to a decline in Δ14CO2 in the atmosphere. δ13C 
changes in the atmosphere have been vital in allowing the Intergovernmental Panel on Climate 
Change (IPCC) to conclude there is a ‘very high confidence’ that the dominant cause of the 
observed increase in CO2 concentrations in the atmosphere since the 19th century has been the 
human burning of fossil fuels (IPCC, 2013).

Figure 1. δ13CO2 from Antarctic ice core record (Rubino et al., 2013), δ13C record from foraminifera 
from the Caribbean Sea (Black et al., 2011) and δ13CO2 from the Mauna Loa monitoring station (Keeling 
et al., 2005; updated: http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv). The former two 
records show a gradual depletion through the 19th century and an acceleration after ~ad 1950.

Figure 2. Monthly data from the Mauna Loa monitoring station (Keeling et al., 2005; updated: http://
scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv) showing an increase in the concentration of CO2 
in the atmosphere from 1958 and a decline in δ13CO2 from 1980 when monitoring of this began.

http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv
http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv
http://scrippsco2.ucsd.edu/data/in_situ_co2/monthly_mlo.csv
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Changes to the nitrogen cycle

There have also been changes in the global nitrogen cycle, with increases in the amount of reactive 
nitrogen (nitrogen compounds such as nitrogen oxides that support biological growth) in the 
atmosphere, thought to be mainly due to the burning of fossil fuels and the use of fertiliser in agri-
culture (Galloway et al., 2004; Jaegle et al., 2005). As with carbon isotopes and the carbon cycle, 
δ15N can be used to track changes in the nitrogen cycle and identify the sources of the nitrogen 
released. Anthropogenic reactive nitrogen sources, especially fertilised soils (Park et al., 2012; 
Pérez et al., 2001), but also fossil fuel emissions (Felix et al., 2012), are generally thought to be 
depleted in δ15N relative to natural sources (although they can have highly variable values and 
some have argued δ15N from fossil fuel emissions is unlikely to be lower than that from natural 
sources; Sharp, 2007; Geng et al., 2014). In organic matter from remote lake sediments from across 
North America and the Arctic (Holmgren et al., 2010; Holtgrieve et al., 2011; Wolfe et al., 2013), 
and in nitrate (NO3–) from ice cores from Greenland (Hastings et al., 2009), there have been 
declines in δ15N from ~ad 1850 (Figure 3). (Again, note that as a result of fractionation, the values 
and magnitudes of change of δ15N in lake organic matter and ice core NO3– differ, but they both 
shown a decline at similar times.) δ15N values in Greenland NO3– declined from +10.6‰ in ad 
1716 to +0.8‰ in ad 2005 (Hastings et al., 2009). The trend in δ15N may be because of the increase 
in isotopically depleted nitrogen from anthropogenic sources (fossil fuel combustion and fertilis-
ers) (Felix and Elliott, 2013; Hastings et al., 2009; Holtgrieve et al., 2011), although Geng et al. 
(2014) have argued that the decline may be due to an equilibrium shift in gas-particle partitioning 
of atmospheric NO3– caused by increasing atmospheric acidity resulting from anthropogenic emis-
sions of nitrogen and sulphur oxides.

As with δ13C, while there is a decline in δ15N from the 19th century in many records, it is really 
after ~ad 1950 that the trend accelerates and becomes pronounced (Figure 3). The changes that 
have occurred in the last century in Sky Pond lake in the US Rockies, for example, are without 

Figure 3. δ15N from organic matter from lake sediments from the US and Canadian Rockies (three-
point moving average) (Wolfe et al., 2013) and from nitrate in Greenland ice cores (Hastings et al., 2009). 
Depletion occurs after ~ad 1850, with an acceleration after ~ad 1950.
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precedent in the 14,000 year record (Wolfe et al., 2013). Although, as we have demonstrated, the 
real drivers of the δ15N trend are debated, it is probable that a combination of anthropogenic pro-
cesses are causing this decline, so δ15N is a useful tool in tracing human impacts on the global 
nitrogen cycle.

Tracing pollution

As well as causing changes in the carbon and nitrogen cycles, human activity has caused pollution 
by remobilising certain elements. This can be traced using isotopes.

Lead isotopes

For millennia, humans have been mining and smelting lead ores, which has released vast quantities 
of lead into the atmosphere, causing widespread airborne pollution (Adriano, 2001; Settle and 
Patterson, 1980). There is evidence for lead contamination in Greenland ice cores, carried there in 
the atmosphere as microparticles, for over 2000 years (e.g. Hong et al., 1994; Rosman et al., 1997). 
Since different lead ores have different lead isotope ratios, it is possible to pinpoint where the lead 
was being mined. Rosman et al. (1997) showed that between ~150 bc and ad 50, 70% of the lead 
seen in Greenland ice cores originated from southern Spain, and historical records show the Romans 
mined the area at this time. As well as different lead ores, lead isotope ratios can be used to distin-
guish between pollution from different industrial processes. Komárek et al. (2008), using 206Pb/207Pb 
versus 208Pb/206Pb, were able to distinguish between lead emitted from vehicles in Europe and the 
USA, coal burning in central Europe and natural sources (Figure 4). More recently it has been 
shown that lead in Greenland ice is increasingly from Chinese sources (Bory et al., 2014).

Trends in lead isotope ratios (especially 206Pb/207Pb) can also be used to track changes in pollu-
tion through time. For example, in Sweden, background 206Pb/207Pb is thought to be around 1.5, 
whereas atmospheric lead pollution derived from smelting, leaded petrol and burning of coal has a 

Figure 4. A 206Pb/207Pb versus 208Pb/206Pb plot showing the different isotopic compositions of selected 
lead sources. Modified from Komárek et al. (2008).
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206Pb/207Pb value of ~1.2 (Renberg et al., 2002). Lake sediments show there was a decline in the 
ratio in Roman times (to ~1.46), and then an increase to higher values in the Dark Ages ~ad 500–
800 (~1.50) (Renberg et al., 2002). Minimum 206Pb/207Pb ratios (~1.22) were reached in the 1970s 
when leaded petrol consumption peaked (Figure 5). With the phasing out of leaded petrol in Europe 
there has been an increase in the ratio (currently ~1.28). The low 206Pb/207Pb in Roman times, 
related to lead mining, as seen in Greenland and Sweden, could be used to support the argument 
made by others (Certini and Scalenghe, 2011; Ellis et al., 2013; Ruddiman, 2003) using different 
proxies that substantial human impacts on the environment were occurring millennia before the 
Industrial Revolution.

Sulphur isotopes

Sulphur isotope ratios can be used to track fossil fuel burning and to trace the sources of pollution 
because, as with lead isotopes, natural and anthropogenic sources often have different isotope 
ratios (e.g. Krouse et al., 1984; Lim et al., 2014). Sulphur released into the atmosphere has the 
potential to cause acid rain. Concerns over widespread ecosystem damage resulting from acid rain 
first gained prominence in Europe in the late 1950s. Tracing the sources of sulphur pollution is 
particularly important given sulphur compounds produced and released into the atmosphere in one 
country can travel across borders and cause acid rain in another (Metcalfe and Derwent, 2005). Yu 
et al. (2007) demonstrated how the δ34S of sulphate in meteoric waters from Chuncheon in South 
Korea vary from +2.6 to +7.5‰, which is significantly different from the δ34S of sulphate from 
locally combusted coal (−4.5 to −0.7‰). This was taken to suggest that sulphur implicated in acid 
rain in that region was not the result of local pollution. A decline in emissions over time from 
brown coal power stations in eastern Germany has been recorded in an increase in δ34S of rain in 
Wroclaw in Poland, demonstrating the effectiveness of measures taken to reduce acid rain resulting 
from anthropogenic emissions (Jędrysek, 2000). Indeed, global sulphur emissions are showing an 

Figure 5. Trends in 206Pb/207Pb and lead concentrations from Lake Koltjärn in Sweden, with a depletion in 
the ratio taken to represent increased anthropogenic lead pollution (Renberg et al., 2002).
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overall decline (Klimont et al., 2013). This demonstrates that some anthropogenic impacts on the 
environment, in this case acid rain linked to sulphur emissions as recorded by δ34S, have peaked, 
at least in some parts of the world.

Radioisotopes

Some isotopes (e.g. 137Cs, 239Pu and 240Pu) occur on Earth almost entirely because of their produc-
tion and release into the atmosphere from nuclear reactors and especially atmospheric nuclear 
weapons testing. They provide a rather precise stratigraphic point in geological archives, with 
detectable levels first apparent ~ad 1952, and peak abundance ~ad 1963/1964 after a large number 
of atmospheric nuclear tests were carried out in ad 1962 before the Partial Nuclear Test Ban Treaty 
came into effect (Figure 6) (Hirose et al., 2000; United Nations Scientific Committee on the Effects 
of Atomic Radiation (UNSCEAR), 2000). 14C is produced naturally in the atmosphere through the 
interaction of neutrons with nitrogen atoms, but as discussed above the burning of fossil fuels had 
been leading to a decline in Δ14CO2 in the atmosphere. This trend was interrupted as neutrons 
released by atmospheric nuclear tests increased the production of 14C in the atmosphere, with a 
peak at a similar time to the peaks in 137Cs, 239Pu and 240Pu (Figure 6) (Graven et al., 2012; Levin 
and Kromer, 2004; Levin et al., 1985; Naegler and Levin, 2009), before a decline again to the pre-
sent day, producing a time-dependent distribution pattern that is referred to as the ‘bomb curve’. 
This is seen in archives such as tree rings (Hua et al., 2000) and corals (Roark et al., 2006).

Conclusion

Changes in isotope geochemistry demonstrate that humans are having an impact on the global 
environment. Different isotopes have recorded different anthropogenic impacts, and changes have 

Figure 6. Yield of atmospheric nuclear tests per year shown by bars (UNSCEAR, 2000), 137Cs deposition 
in Northern and Southern Hemispheres represented by areas (UNSCEAR, 2000), 239,240Pu deposition in 
Japan shown by the dashed line (Hirose et al., 2000) and Δ14CO2 measured at Vermunt, Austria shown by 
the solid line (Levin et al., 1985). The yield of atmospheric nuclear tests in the atmosphere peaked in 1962. 
Δ14CO2 at Vermunt, 239,240Pu in Japan and 137Cs deposition in the Northern Hemisphere peaked in 1963 
and 137Cs in the Southern Hemisphere in 1964.
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occurred at different times and different rates. δ13C and Δ14C show the input of fossil fuel-derived 
CO2 into the atmosphere, δ15N records reveal a change in the global nitrogen cycle, lead and sul-
phur isotopes are tracers of human pollution histories and radioisotopes record the point at which 
humans mastered nuclear weapons technology. Some of the isotopes that we use to demonstrate 
human impacts, especially carbon and nitrogen isotopes, could also be influenced in similar ways 
by natural processes. This complexity has led to the Early Anthropogenic Hypothesis debate. On 
the other hand, other isotopes, especially radioisotopes, but arguably also lead isotopes, show a 
clear human imprint: in the case of certain radioisotopes their occurrence is almost entirely due to 
human-induced nuclear reactions and in the case of lead isotopes the ratios are changed in ways 
unlikely to be due to natural processes.

As for whether isotopes can contribute to the debate on where to set the Holocene–Anthropocene 
boundary, we have shown there is a clear acceleration in the trend to lower δ13C and δ15N after ~ad 
1950, at the time of the ‘Great Acceleration’ in human activities (Steffen et al., 2007), and a decade 
later there was a near synchronous, worldwide peak in radioisotopes related to atmospheric nuclear 
weapons testing that could be useful as a unique stratigraphic marker to define the boundary 
(Zalasiewicz et al., 2014). However, it has been argued that carbon isotopes show (smaller) changes 
in the global composition of the atmosphere hundreds to thousands of years before ad 1950 and 
other isotopes, such as lead, also show human impacts on the environment millennia ago. Therefore, 
while there is an isotopic signature of the Anthropocene, and isotope geochemistry can play a role 
in the decision of the International Commission on Stratigraphy regarding whether to define a new 
geological epoch, it is not clear from isotopes alone where to set the Holocene–Anthropocene 
boundary.

Acknowledgements

Frank Oldfield and Jan Zalasiewicz are thanked for their invitation to write this review and three anonymous 
reviewers are thanked for their comments that improved the manuscript. We are also grateful to David Black, 
Alexander Wolfe and Ingemar Renberg for providing us with data to use in our figures and to Elsevier for 
permission to reproduce Figure 4. This work is published with the permission of the Executive Director of the 
British Geological Survey.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit 
sectors. 

References

Adriano DC (2001) Trace Elements in the Terrestrial Environments: Biogeochemistry, Bioavailability, and 
Risks of Metals. New York: Springer.

Al-Rousan S, Pätzold J, Al-Moghrabi S et al. (2004) Invasion of anthropogenic CO2 recorded in planktonic 
foraminifera from the northern Gulf of Aqaba. International Journal of Earth Sciences 93: 1066–1076.

Barnosky AD, Matzke N, Tomiya S et al. (2011) Has the Earth’s sixth mass extinction already arrived? 
Nature 471: 51–57.

Black D, Thunell R, Wejnert K et al. (2011) Carbon isotope composition of Caribbean Sea surface waters: 
Response to the uptake of anthropogenic CO2. Geophysical Research Letters 38: L16609.

Bory AJM, Abouchami W, Galer SJG et al. (2014) A Chinese imprint in insoluble pollutants recently depos-
ited in central Greenland as indicated by lead isotopes. Environmental Science and Technology 48: 
1451–1457.

Broecker WS, Clark E, McCorckle DC et al. (1999) Evidence for a reduction in the carbonate ion content of 
the deep sea during the course of the Holocene. Paleoceanography 14: 744–752.



Dean et al. 285

Butler PG, Scourse JD, Richardson CA et al. (2009) Continuous marine radiocarbon reservoir calibration and 
the 13C Suess Effect in the Irish Sea: Results from the first multi-centennial shell-based marine master 
chronology. Earth and Planetary Science Letters 279: 230–241.

Certini G and Scalenghe R (2011) Anthropogenic soils are the golden spikes for the Anthropocene. The 
Holocene 21: 1269–1274.

Crutzen PJ (2002) Geology of mankind. Nature 415: 23.
Crutzen PJ and Stoermer EF (2000) The Anthropocene. IGBP Newsletter 41: 12.
Ellis EC, Kaplan JO, Fuller DQ et al. (2013) Used planet: A global history. PNAS 110: 7978–7985.
Elsig J, Schmitt K, Leuenberger D et al. (2009) Stable isotope constraints on Holocene carbon cycle changes 

from an Antarctic ice core. Nature 461: 507–510.
Farquhar GD, Ehleringer JR and Hubick KT (1989) Carbon isotope discrimination and photosynthesis. 

Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–537.
February EC and Stock WD (1999) Declining trends in the 13C/12C ratio of atmospheric carbon dioxide from 

tree rings of South Africa. Quaternary Research 52: 229–236.
Felix JD and Elliott EM (2013) The agricultural history of human–nitrogen interactions as recorded in ice 

core δ15N-NO3–. Geophysical Research Letters 40: 1642–1646.
Felix JD, Elliott EM and Shaw SL (2012) Nitrogen isotopic composition of coal-fired power plant NOx: 

Influence of emission controls and implications for global emission inventories. Environmental Science 
and Technology 46: 3528–3535.

Ferretti DF, Miller JB, White JWC et al. (2005) Unexpected changes to the global methane budget over the 
last 2,000 years. Science 309: 1714–1717.

Foley SF, Gronenborn D, Andreae MO et al. (2013) The Palaeoanthropocene – The beginning of anthropo-
genic environmental change. Anthropocene 3: 83–88.

Gale SJ and Hoare PG (2012) The stratigraphic status of the Anthropocene. The Holocene 22: 1491–1495.
Galloway JN, Dentener FJ, Capone DG et al. (2004) Nitrogen cycles: Past, present, and future. Biogeochemistry 

70:153–226.
Geng L, Alexander B, Cole-Dai J et al. (2014) Nitrogen isotopes in ice core nitrate linked to anthropogenic 

atmospheric acidity change. PNAS. Epub ahead of print. DOI: 10.1073/pnas.1319441111.
Graven HD, Gruber N, Key R et al. (2012) Changing controls on oceanic radiocarbon: New insights on shal-

low-to-deep ocean exchange and anthropogenic CO2 uptake. Journal of Geophysical Research Oceans 
117: C10005.

Hastings MG, Jarvis JC and Steig EJ (2009) Anthropogenic impacts on nitrogen isotopes of ice-core nitrate. 
Science 324: 1288.

Hirose K, Igarashi Y, Aoyama M et al. (2000) Long-term trends of plutonium fallout observed in Japan. In: 
Kudo A (ed.) Plutonium in the Environment. Amsterdam: Elsevier, pp. 251–266.

Hoefs J (2009) Stable Isotope Geochemistry. Berlin: Springer-Verlag.
Holmgren SU, Bigler C, Ingólfsson Ó et al. (2010) The Holocene–Anthropocene transition in lakes of west-

ern Spitsbergen Svalbard (Norwegian High Arctic): Climate change and nitrogen deposition. Journal of 
Paleolimnology 43: 393–412.

Holtgrieve GW, Schindler DE, Hobbs WO et al. (2011) A coherent signature of anthropogenic nitrogen depo-
sition to remote watershed of the northern hemisphere. Science 334: 1545–1548.

Hong S, Candelone J, Patterson CC et al. (1994) Greenland ice evidence of hemispheric lead pollution two 
millennia ago by Greek and Roman civilisations. Science 265: 1841–1843.

Hua Q, Barbetti M, Jacobsen GE et al. (2000) Bomb radiocarbon in annual tree rings from Thailand and 
Australia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with 
Materials and Atoms 173: 359–365.

Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on 
Climate Change. Cambridge: Cambridge University Press.

Jaegle L, Steinberger L, Martin RV et al. (2005) Global partitioning of NOx sources using satellite observa-
tions: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss 
130: 407–423.



286 The Anthropocene Review 1(3)

Jędrysek MO (2000) Oxygen and sulphur isotope dynamics in the SO2–
4 of an urban precipitation. Water, Air 

and Soil Pollution 117: 15–25.
Keeling CD (1979) The Suess Effect: 13Carbon–14Carbon interrelations. Environment International 2: 229–

300.
Keeling CD, Piper SC, Bacastow RB et al. (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial 

biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In: Ehleringer JR, 
Cerling TE and Dearing MD (eds) A History of Atmospheric CO2 and its effects on Plants, Animals, and 
Ecosystems. New York: Springer Verlag, pp. 83–113.

Klimont Z, Smith SJ and Cofala J (2013) The last decade of global anthropogenic sulphur dioxide: 2000–2011 
emissions. Environmental Science Letters 8: 014003.

Komárek M, Ettler V, Chrastný V et al. (2008) Lead isotopes in environmental sciences: A review. 
Environment International 34: 562–577.

Krouse HR, Legge AH and Brown HM (1984) Sulphur gas emissions in the boreal forest: The West Whitecourt 
case study. Water, Air and Soil Pollution 22: 321–347.

L’Annunziata MF (2012) Radiation physics and radionuclide decay. In: L’Annunziata MF (ed.) Handbook of 
Radioactivity Analysis. Oxford: Academic Press, pp. 2–148.

Levin I and Kromer B (2004) The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere 
(1959–2003). Radiocarbon 46: 1261–1272.

Levin I, Kromer B and Hammer S (2013) Atmospheric Δ14CO2 trend in Western European background air 
from 2000 to 2012. Tellus B 65: 20092.

Levin I, Kromer B, Schoch-Fischer H et al. (1985) 25 years of tropospheric 14C observations in central 
Europe. Radiocarbon 27: 1–19.

Levin I, Naegler T, Kromer B et al. (2010) Observations and modelling of the global distribution and longterm 
trend of atmospheric 14CO2. Tellus B 62: 26–46.

Lim C, Jang J, Lee I et al. (2014) Sulfur isotope and chemical compositions of the wet precipitation in two 
major urban areas, Seoul and Busan, Korea. Journal of Asian Earth Sciences 79: 415–425.

Lüthi D, Le Floch M, Bereiter B et al. (2008) High-resolution carbon dioxide concentration record 650,000–
800,000 years before present. Nature 453: 379–382.

MacFarling Meure C, Etheridge D, Trudinger C et al. (2006) Law Dome CO2, CH4 and N2O ice core records 
extended to 2,000 years BP. Geophysical Research Letters 33: L14810.

Metcalfe SE and Derwent D (2005) Atmospheric Pollution and Environmental Change. London: Hodder 
Arnold.

Mischler JA, Sowers TA, Alley RB et al. (2009) Carbon and hydrogen isotopic composition of methane over 
the last 1000 years. Global Biogeochemical Cycles 23: GB4024.

Naegler T and Levin I (2009) Observation-based global biospheric excess radiocarbon inventory 1963–2005. 
Journal of Geophysical Research 114: D17302.

Nozaki Y, Rye DM, Turekian KK et al. (1978) A 200 year record of carbon-13 and carbon-14 variations in a 
Bermuda coral. Geophysical Research Letters 5: 825–828.

Park S, Croteau P, Boering KA et al. (2012) Trends and seasonal cycles in the isotopic composition of nitrous 
oxide since 1940. Nature Geoscience 5: 261–265.

Pérez T, Trumbore SE, Tyler SC et al. (2001) Identifying the agricultural imprint on the global N2O budget 
using stable isotopes. Journal of Geophysical Research 106: 9869–9878.

Renberg I, Brännvall M, Bindler R et al. (2002) Stable lead isotopes and lake sediments – A useful combi-
nation for the study of atmospheric lead pollution history. The Science of the Total Environment 292: 
45–54.

Ridgwell AJ, Watson AJ, Maslin MA et al. (2003) Implications of coral reef buildup for the controls on 
atmospheric CO2 since the Last Glacial Maximum. Paleoceanography 18: 1083.

Roark EB, Guilderson TP, Dunbar RB et al. (2006) Radiocarbon-based ages and growth rates of Hawaiian 
deep-sea corals. Marine Ecology Progress Series 327: 1–14.

Rosman KJR, Chisholm W, Hong S et al. (1997) Lead from Carthaginian and Roman Spanish mines iso-
topically identified in Greenland ice dated from 600 B.C. to 300 A.D. Environmental Science and 
Technology 31: 3413–3416.



Dean et al. 287

Rubino M, Etheridge DM, Trudinger CM et al. (2013) A revised 1000 year atmospheric δ13C-CO2 record 
from Law Dome and South Pole, Antarctica. Journal of Geophysical Research: Atmospheres 118: 8482–
8499.

Ruddiman WF (2003) The anthropogenic greenhouse era began thousands of years ago. Climatic Change 61: 
261–293.

Ruddiman WF (2013) The Anthropocene. Annual Review of Earth and Planetary Sciences 41: 45–68.
Ruddiman WF, Kutzbach JE and Vavrus SJ (2011) Can natural or anthropogenic explanations of late-Holo-

cene CO2 and CH4 increases be falsified? The Holocene 21: 1–15.
Ruddiman WF, Vavrus S, Kutzbach J et al. (2014) Does pre-industrial warming double the anthropogenic 

total? The Anthropocene Review. Epub ahead of print. DOI: 10.1177/2053019614529263.
Schmidt GAD, Shindell DT and Harder S (2004) A note on the relationship between ice core methane con-

centrations and insolation. Geophysical Research Letters 31: L23206.
Settle D and Patterson CC (1980) Lead in Albacore: Guide to lead pollution in Americans. Science 201: 

1167–1176.
Sharp Z (2007) Stable Isotope Geochemistry. New Jersey: Pearson.
Steffen W, Crutzen P and McNeil JR (2007) The Anthropocene: Are humans now overwhelming the great 

forces of nature? Ambio 36: 1317–1321.
Steffen W, Grinevald J, Crutzen P et al. (2011) The Anthropocene: Conceptual and historical perspectives. 

Philosophical Transactions of the Royal Society 369: 842–867.
Stuiver M and Polach HA (1977) Discussion: Reporting of 14C data. Radiocarbon 19: 355–363.
Stuiver M and Quay P (1981) Atmospheric 14C changes resulting from fossil fuel CO2 release and cosmic ray 

flux variability. Earth and Planetary Science Letters 53: 349–362.
Suess HE (1955) Radiocarbon concentration in modern wood. Science 122: 415–417.
Swart PK, Greer L, Rosenheim BE et al. (2010) The 13C Suess Effect in scleractinian corals mirror changes 

in the anthropogenic CO2 inventory of the surface oceans. Geophysical Research Letters 37: L05604.
United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2000) Sources and 

effects of ionizing radiation. Report of the United Nations Scientific Committee on the Effects of Atomic 
Radiation to the General Assembly. New York: United Nations.

Vince G (2011) An Epoch debate. Science 334: 32–37.
Wilkinson BH (2005) Humans as geologic agents: A deep-time perspective. Geology 33: 161–164.
Wolfe AP, Hobbs WO, Birks HH et al. (2013) Stratigraphic expressions of the Holocene–Anthropocene tran-

sition revealed in sediments from remote lakes. Earth-Science Reviews 116: 17–34.
Yu J, Park Y, Mielke RE et al. (2007) Sulfur and oxygen isotopic compositions of the dissolved sulphate in 

the meteoric water in Chuncheon, Korea. Geosciences Journal 11: 357–367.
Zalasiewicz J, Williams M, Haywood A et al. (2011) The Anthropocene: A new epoch of geological time? 

Philosophical Transactions of the Royal Society A 369: 835–841.
Zalasiewicz J, Williams M and Waters CN (2014) Can an Anthropocene Series be defined and recognised? 

Geological Society, London, Special Publications. Epub ahead of print. DOI: 10.1144/SP395.16.




