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Web Appendix 1. Estimation of the instantaneous reproduction number
Following Fraser ,  we assume that  the distribution of  infectiousness  through time after infection is

independent of calendar time. We model transmission with a Poisson process, so that the rate at which

someone infected in time step t s  generates new infections in time step t, is equal to t sR w , where tR

is the instantaneous reproduction number at time t  and sw  a probability distribution (hence summing

to 1) describing the average infectiousness profile after infection. Therefore the incidence at time t  is

Poisson  distributed  with  mean  
1

t

t t s s
s

R I w



 ,  and  the  likelihood  of  the  incidence  tI  given  the

reproduction number tR , conditional on the previous incidences I
0
,… I t- 1

, is:
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Now,  if  transmissibility  is  assumed  constant  over  a  time  period   1;t t  ,  measured  by  the

reproduction number noted  ,tR  ,  the  likelihood of the incidence during this time period,  I
t- t +1

,…, I
t

given the reproduction number ,tR  , conditional on the previous incidences I0
,… I t- t , is:
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Using  a Bayesian framework  with  a  Gamma distributed prior  with  parameters   ,a b  for  ,tR  ,  the

posterior joint distribution of ,tR   is 
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Therefore,  the  posterior  distribution  of   ,tR   is  a  Gamma  distribution  with  parameters
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.  In  particular,  the  posterior  mean  of  ,tR  is  1
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posterior coefficient of variation (CV, standard deviation divided by mean) of ,tR  is 
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The results shown in the main text were obtained using a Gamma prior distribution with mean 5 and

standard deviation 5 (therefore 1, 5a b  ) for each ,tR  . 

Web Appendix 2. Choice of time window
The estimates of R  are expected to depend on the choice of the time window size  . Small values of 

lead to more rapid detection of changes in transmission but also more statistical noise; large values lead

to more smoothing, and reductions in statistical noise. So how to choose the appropriate time window?

Having an analytical formulation of the posterior distribution of R  allowed us to link the posterior CV to

the number of incident cases in the time window considered (see section Web Appendix 1.). Imposing a

posterior  CV  smaller  than  a  predetermined  threshold  value   thresholdCV  leads  to

1
2

1

thresh

t

d
s

t ols CV
I a

  

  . This gives a minimum bound to the number of incident cases in the time

window considered. Note that this result is independent on the infectiousness profile. 

Web Table 1 presents the minimum number of incident cases in each time window corresponding to

different choices of  prior  CV and aimed posterior CV. This result  can provide guidance on the time

windows to consider. 

Web  Table  1:  Minimum number  of  incident  cases  in  each  time  window as  a  function  of  the  aimed

posterior coefficient of variation (CV) for different choices of the prior coefficient of variation. 

Prior
CV

Aimed posterior CV

  1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

1 0 1 1 2 2 3 6 11 24 99

2 1 1 2 2 3 4 6 11 25 100

5 1 2 2 3 3 4 7 12 25 100

10 1 2 2 3 3 4 7 12 25 100

10000 1 2 2 3 3 4 7 12 25 100
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Web Appendix 3. When can we start estimating R? 
For real-time estimates of R  to be useful, we need to start computing them early during an epidemic.

However, estimating  R  too early in the epidemic might not be possible, at least if a certain precision in

the estimates is desired, for several reasons.

First, the estimate of R  over a chosen time window can only be obtained at the end of that window,

since it requires the observation of incident cases over the whole window. 

Moreover, we saw in section Web Appendix 2. that the precision of the estimate is higher for a higher

number of incident cases. To get a posterior CV of 0.3 for example (which is the aimed CV we used to get

the results presented in the main text), the time window considered must comprise at least 11 incident

cases (see Web Table 1). We therefore advise starting estimating R  only after 12 (the initial case + 11)

cases have been observed at total. Anyway, there is little chance that an epidemic in its very early stage,

with <12 cases, would be detected, unless the symptoms are extremely severe. 

Finally, the infectiousness profile should also provide guidance on when to start estimation. Indeed,

estimating R  before at least one generation of cases has been observed is difficult. For example, in the

extreme case where generations are discrete, all  cases in the second generation are infected at the

same time t after the index case: it is therefore impossible to estimate R  before that time t. Moreover,

early in an outbreak, a substantial fraction of incident cases may be imported, which we do not account

for  in  this  study.  Waiting  until  at  least  one  average  serial  interval  has  passed  should  reduce  the

associated bias in the early estimates of R .  

Overall, we suggest starting estimating R  once those three criteria are fulfilled: at least after  , at least

after one mean serial interval, and when at least 12 cases have been observed since the beginning of the

epidemic. 

Web Appendix 4. Uncertainty in the infectiousness profile
Estimates of the reproduction number are highly dependent on the choice of the infectiousness profile

sw . This can be approximated by the distribution of the generation time (i.e. time from the infection of

a primary case to infection of  the cases he/she generates) .  However,  times of  infection are rarely

observed and the generation time distribution is therefore difficult to measure. On the other hand, the

timing  of  symptoms  onset  is  usually  known  and  such  data  collected  in  closed  settings  where

transmission can reliably be ascertained (e.g. households) can be used to estimate the distribution of

the serial interval (time between symptoms onset of a case and symptoms onset of his/her secondary

cases).  Therefore, in practice, we apply our method on data consisting of daily counts of symptoms

onset and where the infectivity profile  sw is  approximated by the distribution of the serial  interval.

However, this distribution can be poorly documented, especially early in the epidemic. Here, we provide

a method to explicitly take into account the uncertainty in the serial interval distribution. To do so, we
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assume that the serial interval is Gamma distributed, and we allow its mean SI  and standard deviation

(sd) SI  to vary according to truncated normal distributions. We sample 1000SIn   pairs of mean and

sd:   
 

 
 1

, , , , SIn

SI SI SI SI   ,  by  first  sampling   k
SI ,  and  then  sampling   k

SI   with  the

constraint that     k k
SI SI  . This constraint ensures that the Gamma probability density function of

the serial interval is null at 0t  . For each pair  
 

,
k

SI SI  , we then sample, for each sliding window

of length   ,  1000n   realizations  R k,1( ) ,…,R k,n( ) of  R  in  its  posterior  distribution,  conditional  on

 
 

,
k

SI SI  , forming at total a sample of size 1,000,000SIn n   of the joint posterior distribution

of R .

We illustrated this method on the 1918 pandemic flu in Baltimore (see main text for the results), for

which we used an average mean serial interval of 2.6 days (sd 1.5, min 1, max 4.2), and an average

standard deviation of 1.5 days (sd 0.5, min 0.5, max 2.5). 

Web Appendix 5. Estimation of the case reproduction number
In order to compare the our approach with the WT approach, we also estimated the case reproduction

number 
  
Rt,t

c
 using the Wallinga and Teunis (WT) method for the five dataset analysed in the main text

as well as for the simulation study (see below). We estimated Rt,t
c

 , the average number of secondary

cases infected by individuals with symptoms onset occurring during the time period  1;t t    . As in

WT, we estimated the mean case reproduction number of individual j as: 
Rind j

c =
wti - tj

wti - tk
k,k¹i
åi

å , where

 ti  
is the time of symptoms onset of individual i  . The mean estimated case reproduction number over

the time window  1;t t 
 
was then estimated by averaging the individual case reproduction number

over  all  those  with  symptoms  onset  in  the  considered  time  window:
 

  

Rt,t
c =

Rind j
c

j ,t- t +1£tj £t

å

1
j ,t- t +1£tj £t

å

.  The

confidence  intervals  were  obtained  by  reconstructing  a  panel  of  possible  infection  trees  using
multinomial allocation of infectors. All the results presented here were obtained with 100 reconstructed
trees. Note that no estimates are available for weeks with no incident cases.

For the simulation study, we derived the theoretical case reproduction number from the instantaneous

reproduction number using the following formula: Rt
c = Rt+sws

s=0

+¥

å   .
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Web Appendix 6. Simulation study
In order to assess the ability of our method to quantify transmissibility in several epidemic scenarios, we

designed a simulation study based on two scenarios: 

 constant instantaneous reproduction number R=2.5,
 constant R before ( R=2.5) and after ( 0.7R  ) a certain date, illustrating the effect of

a control measure such as school closure.

For each scenario, we simulated 100 epidemics, starting with 10 index cases. We used a SARS like serial
interval distribution, with mean 8.4 days and standard deviation 3.8 days. We assumed a simple scenario
with constant incubation period, so that the incidence of symptomatic cases is exactly the incidence of

infections, but shifted in time. For each day 2t  , the number of incident cases tI  was drawn from a

Poisson distribution with mean 
1

t

t t s s
s

R I w



 , where sw  is the discrete serial interval distribution. The

epidemics were run for T =50  days, with the intervention in scenario 2 occurring on day Te =15. For

each  simulated  epidemic,  we  then  reestimated,  using  our  method,  the  instantaneous  reproduction

number ,tR  . 

In order to compare the two approaches, we also estimated the case reproduction number 
  
Rt,t

c
 using

the Wallinga and Teunis (WT) method (see previous section) . 

The simulated epidemics are shown in  Web Figure 1 and the corresponding estimated reproduction

numbers shown in Web Figures 2 and 3.

Our method allows reestimating the instantaneous reproduction number used for simulation. Unlike the

WT method, it does not suffer of the right censoring, i.e. estimates of the reproduction number at the

very  end  of  the  time  series  accurately  reflect  the  transmissibility  at  that  time  point  and  do  not

artefactually decrease to zero due to lack of observation of secondary cases in the future (see  Web

Figure  2).  However  it’s  worth  mentioning  that  methods  inspired  from  the  WT  method  have  been

developed to overcome this issue . 

The case reproduction number 
  
Rt,1

c

 
on a day t reflects transmissibility over a time period starting on day

t and lasting for  one serial  interval,  whereas the instantaneous reproduction number  Rt,1  
on day t

reflects transmissibility on a single day. Therefore  
  
Rt,1

c
 is smoother than  Rt,1  . Similarly for any given

window size   ,  the instantaneous  R over that window estimated with our method is more variable

from one time window to the next than the corresponding case cR  (see Web Figure 2).

Interestingly,  our  method allows  detecting  changes  in  the  instantaneous  reproduction  number,  for

instance a decrease in transmissibility following a control measure. These features are more difficult to

detect when estimating cR  because it is not an instantaneous measure of transmissibility, and therefore

its variations are much smoother over time (see Web Figure 3). 
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Using larger time windows allows getting smoother estimates of R, which leads to smoother but delayed

curves and lowers the ability to detect changes in transmissibility. However, since our method is based

on analytical estimates, analyses are fast and one can choose several time windows to analyse a dataset.

Web Figure  1 : Simulated epidemic curves in scenarios with constant instantaneous reproduction R=2.5 (left), constant R
before (R=2.5) and after (R=0.7) a control measure on day 15 (right). 100 epidemics were simulated for each scenario, using a
SARS-like serial interval. 

Web Figure 2 : Instantaneous reproduction number (left panels) and case reproduction numbers (right panels) estimated, for
100 epidemics  simulated under  scenario 1 (constant  transmissibility)  by our  method and the Wallinga and Teunis  (WT)
method respectively, on daily windows (top panels) and sliding weekly windows (bottom panels). The black lines show the
mean estimates and the grey zones show the 95% credible (our method) or confidence (WT method) intervals. The red lines
show the instantaneous reproduction number used for simulation (left panels)  and the corresponding case reproduction
numbers (right panels) calculated as in . 
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Web Figure 3 : Instantaneous reproduction number (left panels) and case reproduction numbers (right panels) estimated, for
100 epidemics simulated under scenario 2 (constant transmissibility before and after a control measure) by our method and
the Wallinga and Teunis (WT) method respectively,  on daily  windows (top panels)  and sliding weekly windows (bottom
panels). The black lines show the mean estimates and the grey zones show the 95% credible (our method) or confidence (WT
method) intervals.  The red lines show the instantaneous reproduction number used for simulation (left panels)  and the
corresponding case reproduction numbers (right panels) calculated as in . 

Web Appendix 7. Influence of incubation period distribution
In the previous section, we assumed that the incubation period was constant, so that in scenario 2 all

cases infected just after the control measure would have symptoms on the same day. If the incubation

period is not constant, the effect will  be diluted and the changes in the instantaneous reproduction

number estimated from the times series of symptoms onset will be less abrupt. 

 In this section, we present a simulation study designed to assess whether changes in transmissibility

would still be detected if the incubation period was variable amongst individuals. 

We considered the simulated epidemics presented in the previous section, but where the dates are the

dates of infection rather than symptoms onset. The incubation period for each case was then drawn

according  to  a  discretized  Gamma distribution with  mean 3.81  days  and variance 8.34 days2 .  The

instantaneous and case reproduction numbers were then estimated from the times series of symptoms

onset. Results are presented in Web Figures 4 and 5. Changes in transmissibility were still apparent in

the estimates  of  the  instantaneous  reproduction number,  but  as  expected,  less  clearly  than in  the

scenario with constant incubation period. Generally speaking, the largest the variance in the incubation

period, the lower the power to detect changes in transmissibility. 
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Web Figure 4 : Instantaneous reproduction number (left panels) and case reproduction numbers (right panels) estimated, for
100 epidemics simulated under scenario 1 (constant transmissibility) and assuming a non constant incubation period, by our
method and the Wallinga and Teunis (WT) method respectively, on daily windows (top panels) and sliding weekly windows
(bottom panels).  The black lines  show the mean estimates  and the grey zones show the 95% credible (our method)  or
confidence (WT method)  intervals.  The red lines  show the instantaneous reproduction number used for simulation (left
panels) and the corresponding case reproduction numbers (right panels) calculated as in .

Web Figure 5 : Instantaneous reproduction number (left panels) and case reproduction numbers (right panels) estimated, for
100 epidemics simulated under scenario 2 (constant transmissibility before and after a control measure) and assuming a non
constant incubation period, by our method and the Wallinga and Teunis (WT) method respectively, on daily windows (top
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panels) and sliding weekly windows (bottom panels). The black lines show the mean estimates and the grey zones show the
95% credible (our method) or confidence (WT method) intervals. The red lines show the instantaneous reproduction number
used for simulation (left panels) and the corresponding case reproduction numbers (right panels) calculated as in .

Web Appendix 8. Influence of underreporting
Simulations described in section 6 were further used to assess the influence of underreporting on the

estimates of R obtained by using the time series of reported incidence. For each scenario, and for each

of the 100 epidemics corresponding to that scenario, we simulated underreporting using a binomial

distribution, with a constant reporting rate   varying between 20% and 100%. More precisely, for each

day t of the epidemic, the number of reported cases tO  was drawn from a binomial distribution with

parameters tI  (the true incidence on day t) and  . The instantaneous reproduction number was then

reestimated crudely from tO . The results are presented in Web Figures 6 and 7. 

On average, the estimates of R from the reported cases only are similar to those obtained from all cases.

However the credible intervals are wider for lower reporting rates (as expected since the number of

cases in each time window is smaller, see section Web Appendix 2.). Moreover, lower reporting rates

lead to more variability  in the mean estimates from one time window to the next,  making it  more

difficult to detect changes in transmissibility.

Overall,  underreporting  does  not  appear  to  affect  much  the  mean  estimates  of  R,  but  affects  the

precision of those estimates. 
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Web  Figure 6 :  Instantaneous  reproduction  number  R  estimated  on daily  windows  for  100 epidemics  simulated  under
scenario  1  (constant  transmissibility),  with  varying  reporting  rates  (100%,  90%,  80%,  70%,  60%,  50%,  40%,  30%,  20%
respectively from top left to bottom right, line per line). The black lines show the mean estimates and the grey zones show
the 95% credible intervals. The red lines show the R used for simulation. 
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Web  Figure  7:  Instantaneous  reproduction  number  R  estimated  on  daily  windows  for  100  epidemics  simulated  under

scenario 2 (constant transmissibility before and after a control measure), with varying reporting rates (100%, 90%, 80%, 70%,

60%, 50%, 40%, 30%, 20% respectively from top left to bottom right, line per line). The black lines show the mean estimates

and the grey zones show the 95% credible intervals. The red lines show the R used for simulation.

Web Appendix 9. Using symptoms onset and serial interval leads to exact estimates
for diseases where infectiousness follows symptoms onset

Our approach to estimate the reproduction number is developed for the ideal situation where times of

infection  are  known  and  the  infectivity  profile sw may  be  approximated  by  the  distribution  of  the

generation time (time from the infection of a primary case to infection of the cases he/she generates) .

However, surveillance data typically report times of symptoms onset rather than times of infection, and
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as a consequence the generation time distribution is  difficult  to ascertain,  unlike  the serial  interval

distribution. 

In this section, we consider diseases for which infectiousness only starts at or after the time of symptom

onset. We propose a model similar to that used in Ferguson et al. . Each infected individual i experiences

an incubation period  Ai during which he/she is  not symptomatic and not infectious.  The incubation

period  is  independently  identically  distributed  in  all  individuals  according  to  a  distribution   .  The

incubation  period  ends  at  the  time  of  symptoms  onset,  and  from  that  time,  individual  i has  an

infectiousness profile given by a distribution  , independent on the incubation period in individual i. If i

infects an individual j, the sequence of infection and symptoms onset in i and j can be represented as in

Web Figure .

Web Figure 8: Generation time and serial interval

Note that in this model, Bij is always positive as i is not infectious before symptoms onset. Moreover, the

generation time and serial interval are given by ij i ijGT A B   and ij j ijSI A B   respectively.  iA , jA

and  ijB  are independent, with respective distributions   ,    and   .  Hence the probability density

functions of  the generation time and the serial  interval  are given by  *GTf    and  *SIf  

respectively, where *  is the convolution product, defined, for two probability density functions f and g

by:        *
s

f g t f t s g s ds  . 

Therefore, in this case, the serial interval and the generation time have exactly the same distribution,

and the estimates obtained using the serial interval distribution as the infectiousness profile will  be

exact. However, if the dates of symptoms onset are used instead of the dates of infection, the estimates

are delayed, since tR  , estimated based on the new symptomatic individuals at time t, reflects in fact

transmissibility at time t  , where   is the incubation period.

When the infectiousness profile    is not independent on the incubation period, the generation time

and serial interval still have the same mean, but their variances can differ . To assess the extent to which
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this could affect estimates of the instantaneous reproduction number obtained using the serial interval

instead of the generation time, we reestimated R for the simulated epidemics described in section 6, but

using a serial interval with standard deviation 2 times lower (respectively 2 times higher) than that used

for the simulation (but same mean).  Results are shown in Web Figure 9.

The instantaneous reproduction numbers reestimated with higher or lower standard deviation for the

serial interval were able to capture changes in transmissibility. However, the mean estimates tended to

be biased towards higher (respectively lower) values when a low (respectively high) standard deviation

was used. In conclusion, using the serial interval distribution instead of the generation time distribution

doesn’t  seem  to  affect  the  ability  to  detect  changes  in  transmissibility,  but  overall,  estimates  of

transmissibility  might  be  slightly  biased  if  the  incubation  period  and  the  infectivity  profile  after

symptoms are not independent. 

Web Figure 9: Instantaneous reproduction number (R) reestimated from 100 simulated datasets under one of two epidemic 

scenarios (left: constant transmissibility, right: constant transmissibility before and after a control measure) over daily 

windows. The red lines show the instantaneous reproduction numbers R used for simulation. The black lines show the 

average (over the 100 simulated epidemics) of the mean R reestimated using the serial interval distribution used for 

simulation; the grey shaded areas are delimited by the average lower and upper bounds of the 95% credible intervals 

estimated using the serial interval distribution used for simulation. The blue (respectively green) lines show the average of 

the mean R reestimated using a serial interval with standard deviation two time lower (respectively two times higher) than 

that used for simulation ; the blue (respectively green) shaded areas are delimited by the average lower and upper bounds of

the 95% confidence intervals estimated using a serial interval with standard deviation two time lower (respectively two 

times higher) than that used for simulation .

Web Appendix 10. Influence  of  the  prior  on  the  mean  and  variance  of  the  serial
interval distribution

We took the example of the outbreak of pandemic flu in Baltimore in 1918 to assess how the choice of

the prior distribution influences the estimates of R . 

First, we assessed the influence of the prior mean and variance on the estimates of R. We explored four

scenarios with respective prior means 1, 5, 10 and 50, and standard deviations equal  to the means

(hence CV=1). A pairwise comparison of the four scenarios showed that the median estimates and upper
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and lower bounds of credible intervals for R  differed by less than 5%, suggesting that the results were

little sensitive to the choice of the prior mean and variance. 

We also explored the impact on the estimates of R of changing the form of the prior distribution. To do

so, we implemented a Monte Carlo Markov Chain (MCMC) procedure, with a simple Metropolis-Hastings

algorithm to update the states of the Markov chain, to estimate R assuming a Weibull distributed prior.

We compared the resulting R estimates with the analytical estimates obtained assuming a Gamma prior

with same mean and standard deviation. The analysis was performed twice, with a prior mean of 1 and

5 respectively (and standard deviation equal to the mean). The estimates of R were very little sensitive

to both the form of the prior distribution (Gamma or Weibull) and the mean prior (1 or 5), as shown in

Web Figure 10.

Web Figure 10:  Daily  estimates  of  the reproduction numbers  R over sliding  weekly windows for  pandemic  influenza in
Baltimore, 1918, for a mean prior of 5 (left panel) and 1 (right panel); the black lines (hidden) correspond to Weibull prior
and the red lines to Gamma prior; posterior medians are shown in plain line and 95% credible intervals in dotted lines.

Web Appendix 11. Discretization of serial interval distributions
Incidence data are typically discrete, so that the serial interval distribution needed to analyze them is

discrete as well. However, most serial interval distributions, fitted to observations of transmission events

in households for instance, are continuous. Here, we propose a formula to discretize the serial interval

distribution. 

We assume that the exact (i.e. continuous) time of infection of an incident case from day t is uniformly

distributed on   t; t 1 . It can be shown that the delay  u between the true times of infection of two

cases  that  are  incident  on  days  t and  t+k (k≥0)  respectively  is  therefore  distributed  according  to

 U k 1 u k 1f u 1 1 u k         .

To  discretize  the  serial  interval  distribution,  we  weight  its  probability  density  function  with  the

probability function of each delay: 
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SI SI SI SI SI

k 1 k

w f u f u du

1 k F k 1 2kF k k 1 F k 1 uf u du uf u du











        



 

which sum to 1. 
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 Shifted Gamma distribution

Assuming the serial interval SI is such that SI 1  is Gamma distributed with probability density function

 
 

t
a 1t 0 b

SI 1 a

1
f t t e

a b








, we find:

         

      
, , , , , ,

, 1, , 1, , 1,

* 2 * 2 2* 1 * 1

2 1 2

k a b a b a b

a b a b a b

w k F k k F k k F k

ab F k F k F k

  

     

      

    

Where , ,a bF  is the cumulative density function of a Gamma distribution with parameters  ,a b .

This is the parameterization that was used for all analyses in the paper unless otherwise specified, and it

is the parameterization implemented in both the Excel® (Microsoft Excel®, Redmond, WA) tool and the

R package.

 Shifted Weibull distribution

Assuming the serial interval SI is such that SI 1  is Weibull distributed with probability density function

 

aa 1 t

b
SI 1 t 0

a t
f t 1 e

b b

  
  
 

 

 
  

 
, we find:

         

   

, , , , , ,

2 1

* 2 * 2 2* 1 * 1

2 2 1

1 1 2 1 1
, , 2* ,

a a a

k W a b W a b W a b

k k k

b b b

a a a

w k F k k F k k F k

ke k e k e

b k k k

a a b a b a b
  

      
       
     

      

    

            
                              

where , ,W a bF  is the cumulative density function of a Weibull distribution with parameters   ,a b , and

  1
0

0

, 1
x

s t
xs x t e dt  

   is the incomplete Gamma function.

Web Appendix 12. Influence of the shape of the serial interval distribution 
We took the example of the outbreak of pandemic flu in Baltimore in 1918 to assess how the shape of

the serial interval distribution influences the estimates of R . 

We explored three distributions for the serial interval: 

 a discretized Gamma distribution with mean 2.6 days and standard deviation 1.5 day

 a discretized Weibull distribution with same mean and variance

 a  manually  constructed  discrete  distribution  with  same  mean  and  variance  but  a

different form. 
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Despite differences in the shape of the serial interval (especially between the manually constructed one

and the two other ones), the estimates of  R were very similar in all three scenarios, as shown in Web

Figure 11. 

Web
Figure 11: Influence of the serial interval shape on the estimates of the reproduction number. Gamma (black), Weibull (red)
and manually constructed (green) serial interval distributions with common mean and variance (left panel). Daily estimates
of the reproduction numbers  R over sliding weekly windows for pandemic influenza in Baltimore, 1918, using these three
serial interval distributions (right panel); posterior medians are shown in plain line and 95% credible intervals in dotted lines.

Web Appendix 13. Derivation  of  the  serial  interval  distribution  for  Measles  and
Smallpox

For all the outbreaks analysed in this article, we assumed a Gamma distribution for the serial interval,

with mean and standard deviation taken from the literature. However, for measles and smallpox, the

mean and standard deviation of the serial interval were not available directly from previous studies.

They were derived indirectly from articles which reported related quantities such as the latency and the

infectious period. In this section, we explain how to derive the serial interval distribution in a model with

latency  L  and  infectious  period  I.  First  we  consider  a  model  with  constant  infectiousness  over  the

infectious period, and then we consider a model in which the infectious period is split in two periods

with two different levels of infectiousness. 

13.1. Measles:  classical  model  with  constant  infectiousness  over  infectious
period

Svensson  shows that in such a model, the probability density function (pdf) of the serial interval (SI)

is  
1

( )
[ ]

* I
GT L

F
f x f x

I

  
  

  E
, where Lf  is the pdf of the latency period L , IF  is the cumulative

density function (CDF) of the infectious period  I ,  [ ]IE  is the average infectious period, and  *

stands for the convolution operator. 
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The mean serial interval is therefore   
2

0

1 [ ]
[ ] [ ] 1 [ ]

[ ] 2 [ ]I

x

I
GT L F x xdx L

I I





    
E

E E E
E E

, and

its variance is   
22

2

0

1 [ ]
[ ] [ ] 1

[ ] 2 [ ]I

x

I
GT L F x x dx

I I





 
     

 


E
Var Var

E E
. In the case where I  is

Gamma distributed with parameters  ,I Ia b  ( [ ] I II a bE  and 
2[ ] I II a bVar ), the variance of the

serial interval is therefore equal to: 

2 21 1 5
[ ] [ ]

12 2 12I I IGT b a a L
 

    
 

Var Var

In  order  to  estimate  the  mean and  variance  of  the  serial  interval  for  measles,  we  used  these

formulae together with the estimates of the average latency period (10.3 days) and of the standard

deviation of the latency period (2.6 days) and the assumptions on the infectious period (leading to

an average infectious period of 8.9 days and a standard deviation of 1.7 days) found in Groendyke et

al. .

13.2. Smallpox: model with infectious period split in two parts with constant
infectiousness over each part

We now consider a model in which the infectious period is split in two successive periods F  and R ,

with two different levels of infectiousness. We assume that infectiousness during the second part (

R ) is k  times infectivity during the first part ( F ). 

A similar reasoning than for the model with constant infectiousness shows that the pdf of the serial

interval  is:  
   

 
1 * 1

( )
[ ] [ ]

* F RF
GT L

F kf F
f x f x

F k R

    
  

   E E
,  where  Lf  is  the  pdf  of  the  latency

period  L ,  FF  and  RF  are  the  CDF  of  the  first  and  second  parts  of  the  infectious  period

respectively,  [ ]FE  and  [ ]RE  are  the corresponding means,  and  *  stands for  the convolution

operator. 

After simplification, the mean serial interval is 
 

2 2[ ] [ ] 2 [ ] [ ]
[ ] [ ]

2 [ ] [ ]
F k R k R F

GT L
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and its variance is:
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In the case where F  and R  are Gamma distributed, the variance becomes  

   
 

           
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Var Var

In  order  to  estimate the mean and variance of  the serial  interval  for  smallpox,  we used these

formulae together with  the estimated durations of  the latency  (mean 11.6  days,  variance 3.36

days2), fever (mean 2.49 days, variance 0.89 days2)and rash (mean 16.0 days, variance 18.3 days2)

periods, and the estimated relative infectiousness during the rash period compared to the fever

period ( 6.4k  ) found in Riley and Ferguson . 

Web Appendix 14. Guide for using the Excel® tool
In this section, we provide step-by-step guidance to using our  Excel®  tool to estimate instantaneous

reproduction numbers from a time series of incidence and a serial interval distribution.  

1. Open the Excel® file Estimation_R_instantaneous.xls

There are several sheets in it : Readme, Data, Output1 serial interval, Output2 R estimates and Figures.
Readme will provide you with information on how to use the document, which is summarized in this
document. 

Data is the only sheet which needs to be modified; only light coloured cells have to be modified. 

2. Fill in the Incidence section as shown in Snapshot 1.

Snapshot 1: Filling in the incidence section
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3. Specify your assumptions about the serial interval distribution (see snapshot 2).

Snapshot 2: Specifying the serial interval distribution

4. Specify the time windows you want to use (see snapshot 3). Keep the posterior coefficient of
variation to its default value of 0.3

Snapshot 3: Choosing the time windows for estimation of R
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5. Specify the prior mean and standard deviation (see snapshot 4). 

Snapshot 4: Specification of the prior distribution

6. Enable Macros

Macros need to be enabled in order to run the estimation of R. Refer to the documentation of  Excel®

specific to the version you are using to know how to enable the macros.  

7. Run the estimation

Snapshot 5: Running the estimation

8. Reading the results

Results  are presented as tables in sheets “Output1 serial interval” and “Output2 R estimates” and as

figures in sheet “Figures”.
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