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Abstract
An important and under-quantified facet of the risks associated with human-induced
climate change emerges through extreme weather. In this paper, we present an initial
attempt to quantify recent costs related to extreme weather due to human interference in
the climate system, focusing on economic costs arising from droughts and floods in New
Zealand during the decade 2007–2017. We calculate these using previously collected
information about the damages and losses associated with past floods and droughts, and
estimates of the “fraction of attributable risk” that characterizes each event. The estimates
we obtain are not comprehensive, and almost certainly represent an underestimate of the
full economic costs of climate change, notably chronic costs associated with long-term
trends. However, the paper shows the potential for developing a new stream of informa-
tion that is relevant to a range of stakeholders and research communities, especially those
with an interest in the aggregation of the costs of climate change or the identification of
specific costs associated with potential liability.
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• We calculate a measure of the degree to which human-induced climate change has affected the chance of a
number of extreme events in New Zealand, 2007–2017.
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• We discuss possible uses of and limitations of this approach, and its potential future development.
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1 Introduction

The idea of using information from probabilistic event attribution (PEA) studies to quantify
damages associated with climate change was first proposed by Allen (2003). In its essence, this
approach couples the attributable change in the probability/intensity of extreme events (the
PEA) with their costs, obtained from other sources, to arrive at quantifications of the
attributable cost of these events. PEA researchers can draw on two different, though compat-
ible (Otto et al. 2012), interpretations, which essentially seek to assess how extreme weather is
changing in terms of either frequency (how the “return period” of a given intensity of event is
changing) or magnitude (how the intensity of an event of given return period is changing).

Surprisingly, PEA studies—that identify the role of anthropogenic climate change in
changing the frequency and intensity of specific extreme weather events—have not yet been
used in any assessment of attributable weather event–related costs. However, several commu-
nities and sectors that are interested in the aggregation of climate change–related events—e.g.
insurers, actuaries, national treasuries, and investors in adaptation infrastructure projects—may
find the outputs of such attributable economic cost studies of value.

These communities and groups are first likely to be national or supra-national in scale, since
these are the scales on which the integration of information about the emergence of climate
signals tends to be most relevant. It is with such a group in mind, the New Zealand Treasury,
that this project was originally conceived. However, the assessments described here can also
be of interested to specific (micro) individuals directly affected by specific extreme events for
which one can both quantify the damage inflicted and conduct a PEA assessment.

At the meso-scale (between the aggregate macro and the individual micro), local planners
may admittedly be less interested in the sort of calculations being developed here, in part
because they are less interested in the aggregation of probabilistic events that did happen, and
in part because local contingencies are often assessed by local planners to be the most crucial
elements of adaptation. However, those working in the meso-scale may still find information
about the speed at which attributable climate change signals emerge, and their respective costs,
of importance.

Another use of this approach is to compare the costs calculated here with the estimates of
climate change costs obtained from general equilibrium macroeconomic models coupled with
climate modelling (the integrated assessment models (IAMs)). Within the climate change
economics literature, there has been an on-going debate about the functional form of climate
damage functions. In many IAMs, damages are parameterized or characterized as a low-order
polynomial function of temperature (Nordhaus 1993; Nordhaus and Boyer 1999; Hope 2006).
Other authors are highly critical of these damage functions: Weitzman (2012) described
(polynomial) damage functions as “a notoriously weak link in the economics of climate
change” on the basis of deep structural uncertainty in their underlying functional form.
Another very prominent researcher, (Pindyck 2013) is even more scathing about them, and
argues that “IAM-based analyses of climate policy create a perception of knowledge and
precision, but that perception is illusory and misleading”.

By developing assessments of economic costs that are based on hydrometeorological
changes that are attributable to anthropogenic climate change, we can provide a valuable
comparison to those maligned damage functions. The costs identified in this paper are not a
full assessment of the costs of climate change, but they do begin the process of assembling a
“bottom-up” understanding of climate change attributable costs, as distinct from the “top-
down” approach adopted using IAMs (Conway et al. 2019). A companion paper (Frame et al.
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2020) makes this top-down and bottom-up comparison for the USA, by focusing on a specific
event—Hurricane Harvey from 2017. That work argues that the top-down IAM approach
appears to dramatically underestimate the risk. The present study focuses on extreme rainfall
and droughts, but leaves out many other channels through which the climate, and climate
change, affects economic activity. We do not include an assessment of potential economic
benefits associated with climate change, though our methodology permits the inclusion of
either increased benefits associated with events that have become more likely (e.g. longer
growing seasons for some crops) or negative damages (i.e. benefits) associated with damaging
events that may have become less likely because of climate change. The method, however, is
restricted to events that have actually occurred.

Below we present preliminary estimates of the economic costs to New Zealand associated
with floods and droughts in the period 2007–2017 that are attributable to anthropogenic
climate change. We use two sets of inputs: estimates of economic costs associated with these
floods and droughts, and estimates of the “fraction of attributable risk” (FAR) of the weather
events, i.e. the fraction of the risk of such events that is attributable to anthropogenic climate
change. The estimates we obtain are not comprehensive, and almost certainly represent an
underestimate of the economic costs of climate change. We describe the scientific and
economic dimensions of the approach, and suggest potential avenues for its future
development.

Extreme events, and associated FARs, are expected to change in the coming decades
because the climate continues to change in response to on-going emissions of greenhouse
gases (and other factors). Changes in FARs should be negligible within the decade-long
analysis period of this study. The economic costs are also likely to change, as these depend
not only on the hazards (the extreme weather phenomena) but also on exposure of people and
assets to that hazard, and their vulnerability. Exposure and vulnerability are also not static, and
are likely to change, leading to changes in the economic costs. Changes in exposure and
vulnerability may be adaptive responses to experienced or anticipated climate trends, and thus,
historical trends in both factors may have differed in the absence of anthropogenic forcing. It is
only very recently that anticipated climate trends have started being considered in an adapta-
tion context, and trends have been predominantly towards increasing exposure of property to
flooding, so we ignore the possibility of adaptation in this study.

Consequently there is significant uncertainty around the FARs and both types of cost
estimates. Insured damages for floods, in particular, almost certainly underestimate the
full economic costs as they ignore any loss in economic activity in the aftermath of these
events, and do not include the damage to uninsured assets (especially public infrastruc-
ture). However, if the users of such cost estimates are only interested in that specific
subset of the costs (e.g. insurers) or are interested in the costs in relation to other
economic events measured with the same metrics (e.g. some government departments
or investors seeking to understand the evolution of climate risks), then the cost estimates
may still be informative and useful.

2 Terminology

Our terminology follows the open-ended Intergovernmental Expert Working Group on Indi-
cators and Terminology relating to disaster risk reduction that was established by the United
Nations General Assembly in 2017.
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A disaster is defined as a serious disruption of the functioning of a community or a
society at any scale due to hazardous events interacting with conditions of exposure,
vulnerability and capacity, leading to one or more of the following: human, material,
economic and environmental losses and impacts. Disaster damage (or direct damage)
occurs during and immediately after the disaster. This is usually measured in physical
units (e.g. square metres of housing, kilometres of roads), and describes the total or
partial destruction of physical assets, the disruption of basic services and damages to
sources of livelihood in the affected area. Disaster damage is “nearly equivalent” to the
concept of direct economic loss. Direct economic loss is the monetary value of total or
partial destruction of physical assets existing in the affected area. Examples of physical
assets that are the basis for calculating direct economic loss include homes, schools,
hospitals, commercial and governmental buildings, transport, energy, and telecommuni-
cations infrastructures; business assets and industrial plants; and production-related
assets such as crops, livestock and machinery. They may also encompass environmental
assets and cultural heritage, but these are rarely quantified. Direct economic losses
usually happen during the event or within the first few hours after the event and are
often assessed soon after the event to estimate recovery costs and insurance payments. In
principle, these are tangible and relatively easy to measure. Our estimates for flood costs
are based on such measures of direct, and insured, damages. In contrast to damage,
indirect economic loss is defined as a decline in economic value-added as a consequence
of direct economic loss and/or human and environmental damage. Indirect economic loss
includes microeconomic impacts (e.g. revenue declines owing to business interruption),
meso-economic impacts (e.g. revenue declines owing to impacts on natural assets,
interruptions to supply chains or temporary unemployment) and macroeconomic impacts
(e.g., price increases, increases in government debt, negative impact on stock market
prices and decline in GDP). Indirect losses can occur inside or outside of the hazard area
and often are experienced with a time lag. As a result, they may be intangible or difficult
to measure.

As we detail below, our estimate for drought costs are focused on economic loss,
rather than direct damages (which are the focus of the flood cost estimates). Indirect
economic losses can be measured (imprecisely) with several methodologies. One ap-
proach is through econometric assessment of past historical data—with diverse method-
ologies such as difference-in-difference or synthetic control. One estimate for the drought
losses (Kamber et al. 2013) uses this approach, by estimating a set of vector
autoregressions using past observational data. One drawback of the Kamber et al.
(2013) approach is that it does not clearly account for the size of the shock once it
passes a certain pre-determined threshold. The other approach is through a model of the
economy which is then perturbed with the appropriate shock (whose magnitude is
obtained from observational data). Modelling tools vary, from computable general
equilibrium to static or dynamic input-output approaches. The Treasury (2013) estimate
of the drought impact is based on the former.

In this conceptualization of the economic dynamics following natural hazard shocks, these
eventually lead to a potential loss (or gain) in well-being, through diverse channels such as by
changing risk awareness or risk tolerance, or leading to other psychological, financial,
environmental and social changes with long-term well-being implications (Fig. 1). This last
part is very difficult to measure (Noy and duPont 2018), and is outside the scope of the
assessment undertaken here.
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3 Data and methods

3.1 Events

The fourteen extreme weather events considered in this paper are listed in Tables 1 and 2.
These events all occurred in New Zealand during the decade from mid-2007 to mid-2017. The
list is restricted to weather events for which a clear link is established between the meteoro-
logical event and damages, and for which anthropogenic climate change attribution analyses
are available. Note that the attribution analysis was performed on rainfall, not the actual flood
magnitude itself. It was pluvial flooding in these events that led to the damage, as is the
standard in the small, high-slope catchments in New Zealand, so precipitation intensity should
serve as an accurate proxy. For the floods, the event duration that was used to estimate the
FAR was chosen to be the longest period over which the rainfall was extreme, since the
damages accrue from the full pulse of excess water. Drought durations vary, and last several
months.

3.2 Climate modelling experiments

For the flood events, we assume a step-change damage function, where no damage occurs
except when precipitation exceeds a specified threshold, with a fixed amount of damage then
occurring irrespective of how much the precipitation exceeds that threshold. That threshold is
defined as the amount that occurred during each of the identified events. Strictly speaking, we
should use delta functions, i.e. the observed amount of damage only occurs for the observed
event magnitude (Harrington 2017). However, we adopt the step-change functions because it
corresponds to the most common method of calculating FARs and because it affects the FAR
estimates calculated in our study by only about 10%. Climate station rainfall observations from
NIWA’s National Climate Database (NIWA 2017) are used, provided there is at least 40 years
of observations available. In most cases, these were continuous 40-year periods and exclusion
of locations with one or more missing years made negligible difference to the results. At each
observing location impacted by the event, extreme value theory is used to estimate an annual
exceedance probability as described below in Section 3.5. The event duration was chosen to be
the longest period over which the rainfall was extreme, since the damages accrue across the
period over which the rain falls. In a New Zealand context, two points are worth noting: first,
catchments are small, so floods are usually pluvial events; second, it is not usually just the
most extreme peak that does the damage, but the full event.

The basis for our inferences about extreme precipitation comes from extremely large
ensembles of simulations of a regional climate model from the “weather@home” experiment
(Massey et al. 2015) for the Australia/New Zealand (ANZ) region (Black et al. 2016). In this

Fig. 1 The dynamic socio-economic consequences of cyclones at different timeframes, showing the progression
of losses over time. Source: Noy (2016)
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setup, the Met Office HadAM3P model (Pope et al. 2000) is run globally, providing lateral
boundary conditions to the regional model HadRM3P (Jones et al. 2004), which covers a
domain spanning Australia, New Zealand and much of Indonesia at approximately 50-km
resolution (Rosier et al. 2015; Black et al. 2016). The model has been shown to reproduce
many large- and medium-scale features of weather and climate with a good degree of accuracy
(Black et al. 2016). In particular, model rainfalls are captured well, albeit with some dry bias in
the extremes, and associated synoptic conditions, such as atmospheric rivers, are also realis-
tically simulated (Rosier et al. 2015).

For this study, we use very large initial condition ensembles to represent many different
realizations of possible weather under varying climate conditions. Two climate forcing
ensembles are compared: (1) all forcings (ALL), which includes sea surface temperatures

Table 1 Insured damages associated with flooding events (resulting from extreme rainfall) in New Zealand over
the period 2007–2017 for the 12 costliest events where it has been possible to form estimates regarding the FAR
of the rainfall event. Estimates of insurance costs for each event are in the column second from right in CPI-
adjusted 2017 NZ$. These data were collected from the private insurers operating in New Zealand, so only
include the types of assets that are typically insured, and only where insurance was actually purchased. These
mostly include residential housing and privately owned commercial property. It does not include publicly owned
property (such as council buildings) and infrastructure such as roads. The right-most column contains the insured
losses attributable to climate change, i.e. the insurance loss estimate multiplied by the FAR of the event. The
insured cost estimates are from the Insurance Council of New Zealand; no uncertainty estimates are available
(obtained on 17/05/19). Full economic costs are expected to be far higher. See text for discussion

Year Date Location Climate change
FAR

Total cost ($m)
best estimate

Cost ($m) attributable
to climate change

2017 3–7 Apr North Island 0.35 ± 0.2 91.46 32.011
2007 10–12 Jul Upper North Island 0.30 ± 0.2 72.7 21.81
2017 7–12 Mar Upper North Island 0.40 ± 0.2 61.7 24.68
2013 19–22 Apr Nelson, Bay of Plenty 0.30 ± 0.2 48.2 14.46
2015 18–21 Jun Lower North Island 0.10 ± 0.2 42.4 4.24
2016 23–24 Mar West Coast-Nelson 0.40 ± 0.2 30.9 12.36
2015 2–4 Jun Otago 0.05 ± 0.2 28.8 1.44
2015 13–15 May Lower North Island 0.30 ± 0.2 22.4 6.72
2011 29 Jan Northland, Bay of Plenty 0.30 ± 0.2 21.3 6.39
2014 8–10 Jul Northland 0.30 ± 0.2 19.3 5.79
2017 13–16 Apr Mostly North Island 0.35 ± 0.2 17.2 6.02
2007 29 Mar Far North 0.30 ± 0.2 15.2 4.56
Total attributable extreme rainfall insured damage costs $140.48

Table 2 Financial losses associated with the two costliest droughts (in CPI-adjusted 2017 NZ$) that occurred in
New Zealand during the period 2007–2017, along with estimated FAR of these events. Estimates of economic
costs for each event are in the column second from right, and are based on economic computable general
equilibrium modelling done by the New Zealand government, and the right-most column shows the economic
losses attributable to climate change, i.e. the economic loss estimate multiplied by the FAR of the event. Note that
the quantities are different from those used in estimating the costs associated with floods (insured losses). In this
case, for droughts, the losses represent a more comprehensive assessment of impact on the economy. Along with
those for floods (Table 1), these cost estimates are also uncertain. See text for discussion

Year Date Event Climate Change FAR Total cost ($m)
best estimate

Cost ($m) attributable to
climate change

2007/08 Summer Drought 0.15 (0.05–0.4) 3237 485
2012/13 Summer Drought 0.20 (0.15–0.4) 1575 315
Total attributable drought losses $800
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(SSTs) from the “Operational Sea Surface Temperature and Sea Ice Analysis” (Donlon et al.
2012), as well as greenhouse gases, aerosol, ozone, solar, and volcanic forcings; (2) “natural
forcings only” (NAT) where the anthropogenic contribution to the forcings has been removed;
this produces many realisations of the weather possible in a hypothetical world without
anthropogenic influence on climate. Estimates of what SST fields might have looked like in
the NAT world were constructed using SST changes (“delta SSTs”) taken from different
global coupled models from the Coupled Model Intercomparison Project Phase 5 (CMIP5)
(Taylor et al. 2012), using results from “HistoricalNat” runs subtracted from “Historical” runs.
These delta SSTs were then subtracted from the SST fields for the year in question of
simulation. To try to span the uncertainty in this estimation, delta SSTs from several different
GCMs were used, together with a multi-model mean. The setup is very similar to that
described by Schaller et al. (2016). Other forcings such as greenhouse gas concentrations,
ozone and aerosols are set to pre-industrial levels, as described in Schaller et al. (2016) and
Black et al. (2016). Paired ensembles of “ALL” and “NAT” forced simulations were available
for the years 2013, 2014 and 2015.

This basic experiment setup has been used in many pieces of recent climate research, and is
a recognised part of the climate change detection and attribution literature; interested readers
should see Bindoff et al. (2013), or the recent review article by Stott et al. (2016).

The study’s assessments of droughts are based primarily on Harrington et al. (2016), in
which the CMIP5 ensemble of models (Taylor et al. 2012) was investigated using self-
organising maps (Hewitson and Crane 2002; Gibson et al. 2017) to estimate FAR for such
events.

3.3 Costs

Cost estimates used here are for the episodic floods and droughts, and ignore chronic costs
resulting from gradual climate trends or trends in nuisance flooding. As we discussed earlier,
the cost figures for floods account only for direct insured damages, while the cost estimates for
droughts measure the annual indirect loss. The figures for insured damages associated with
floods are from the Insurance Council of New Zealand (2017). These flooding costs represent
a significant underestimate of the full financial and economic impacts of these rainfall events
as they do not include losses in economic activity in the aftermath of the events, nor
emergency response costs that prevented damage to insured properties. The estimates of
economic losses for the two droughts are from government estimates (Ministry of
Agriculture and Fisheries 2009; Treasury 2013).

The cost figures for insured damages from floods are reliably measured, as the ICNZ data
include the actual amount of payments made by all the ICNZ member companies (ICNZ
membership accounts for maybe 95% of overall commercial insurance available in New
Zealand). However, while precise, these figures under-state the total economic impact (in-
cluding both loss and damage) associated with these events. Even the damages under-represent
the full extent of damages from extreme rainfall, as they do not include uninsured damages.
Uninsured damage includes damage to transportation, communication and utility networks,
which are typically uninsured, public and community-owned buildings which are almost never
insured commercially, and those commercial and residential buildings that were not under
current insurance cover at the time of the event. This latter category is not very large, as
insurance penetration rates in New Zealand are quite high (more than 95% for residential
buildings, and 70–75% for commercial ones). In addition, the measure of damage (insured and
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uninsured) does not include economic losses, such as lost production because of infrastructure
failures, the costs associated with medical and pastoral care of affected communities, and the
costs of disaster relief and clean-up.

The costs associated with droughts, in contrast, are estimates obtained from modelling of
the indirect economic losses. These will be very sensitive to the modelling assumptions that are
used, and to the exact specification of the shock with which the model is perturbed. Two
modelled estimates of the cost of the 2013 drought are available, and are fairly similar (0.6 and
0.7% of annual GDP).

As noted, direct damages and indirect losses are not the same (the former is a flow, the latter is
a stock measure) and the two are therefore not comparable. In this specific case, the indirect loss,
as estimated for droughts, is probably the more comprehensive figure, as the extent of direct
damage to assets from drought is fairly minimal. Nonetheless, the drought cost figures are also
much more speculative as they are modelled rather than counted. So, in this case, we observe a
tradeoff between a more comprehensive estimate (droughts) and a more accurate one (floods).

The absence of accurate assessments of economic costs associated with the extreme events,
including both damages and losses, is probably the largest source of uncertainty in this report.
In the absence of full and accurate accounting of economic damages and losses associated with
extreme rainfall events, we have drawn on insured losses as the most readily available data.
Fuller analysis of the economic impact of weather-related disasters that will tally the range of
both damages and losses is required for a better understanding of the total impact of extreme
weather, in New Zealand and elsewhere. These estimates of complete costs (damages and
losses) are not available consistently anywhere else, either, so their collection or estimation
should be a priority in furthering the research agenda outlined in this paper.

3.4 Fraction of attributable risk

In estimating the risk of events attributable to anthropogenic climate change we use the
“Fraction Attributable Risk” metric, defined as

FAR ¼ 1−P0=P1

where P0 is the probability of an event occurring in the absence of human influence on climate,
and P1 the corresponding probability in a world in which human influence is included. While
strictly speaking for this study P0 and P1 should be the likelihoods of a certain event magnitude
(Harrington 2017), here we use exceedance probabilities because of their established usage in
event attribution studies, their better sampling, and their only small bias (about a 10%
overestimate for the events in this study). FAR is thus the fraction of the risk that is attributable
to human influence (Bindoff et al. 2013). An “event” in this context occurs when a specified
threshold is exceeded for some measure of interest, such as cumulative rainfall over a 3-day
period. In the rainfall examples in this study, the synoptic conditions for the rainfall events
identified within the weather@home/ANZ simulations were found to be consistent with the
events that actually occurred, meaning that the simulated event produced the event-above-
threshold in a manner physically consistent with observations (Rosier et al. 2015). To calculate
extreme rainfall FARs, we follow the practices established in Pall et al. (2011), and, in
Australasian contexts, Rosier et al. (2015) and Black et al. (2016). The estimates of FAR in
this study are, for the most part, indicative estimates based on the current state of knowledge
aimed at providing an approximate order of magnitude estimate of the costs of current climate
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change. It is acknowledged that, as a metric, FAR has some limitations. Christiansen (2015)
has shown, for example, that as the extreme high end of the distribution is approached, FAR
tends towards one for Gaussian-distributed variables but towards zero for heavy-tailed distri-
butions. Our modelled rainfall maxima distributions tend to be heavy-tailed, and the interpre-
tation of what could well be underestimated values of FAR is not straightforward. A different
measure of likelihood change, such as the risk ratio, might actually be more interpretable;
however, we found FAR to be a useful metric in the context of this study, especially given the
high level of uncertainty in many of the estimates used here (in particular, the costs).

While in general extreme precipitation at midlatitudes increases with the thermodynamic
contribution from the Clausius-Clapeyron relationship (Pall et al. 2011), recent research
(Risser et al. 2019, in prep) has demonstrated that changes in weather patterns associated with
extremes can compete with this effect. In some instances, at some locations, the net effect can
be a reduction in extreme precipitation (Pfahl et al. 2017). This would imply a FAR < 0, i.e.
where the risk of extreme events in some places has been reduced because of human influence.
There is nothing in our framework to prevent the inclusion of events which have become less
likely as a result of human influence on the climate, i.e. events associated with reduced rather
than increased costs (but with the Fraction of Attributable Decrease in Risk measure, (Wolski
et al. 2014)). However, because our analysis is based on events that have occurred, we have an
expected selection bias against events that have not occurred because they are less likely under
anthropogenic forcing (i.e. FAR < 0). We only examine two types of events in this study
though, and calculate similar moderate FAR values for all wet events and similar moderate
FAR values for both dry events. This suggests that the issue of a selection bias is not important
for the types of events considered here. Nevertheless, further work is needed to investigate the
importance of this selection bias in New Zealand when considering a more expansive list of
event types (cold events in particular). In this paper, we focused on the most damaging rainfall
events from an insurance perspective, without prior consideration of whether FARs might be
positive or negative, or near zero.

3.5 Floods

We multiply the FAR by the cost estimate to obtain attributable costs. For some of the events
considered, we have simulations for the SST patterns that characterize the year in question.
Resourcing constraints mean that we only had three full years of simulations on which to
draw—the years 2013 to 2015. As a result, we have restricted the analysis to considering only
the impact of climate change on events to the 2007–2017 period, on the basis that these three
ensembles provide a reasonable starting point for the quantification of FARs in the context of
New Zealand’s climate (Risser et al. 2017).

Observed rainfall was analysed at stations within the catchment of a flooding event for three
event durations: 1 day, 3 days and 5 days (none of the events lasted more than 5 days). All
events involved heavy precipitation immediately before the flooding, which is generally the
case for flooding events in New Zealand. The rainfall associated with each flooding event is
the largest over the recent 14-year period for the relevant area and storm duration. The event
probability was estimated for each station after fitting a generalized extreme value (GEV)
distribution to each station annual maxima series for the three durations. This was done
separately for each season where the annual maxima series was based on rainfall observed
within that season. The annual exceedance probability for each event was determined at nearby
stations based on the fitted GEV distribution for the relevant season. The event probability was
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calculated as the average over the chosen stations and the duration selected as the longest
period over which the event was extreme. Finally, we focused the analysis on the most
financially significant flooding events over the period July 2007–June 2017, considering only
those events with insurance losses in excess of an arbitrary threshold of 15M in NZ$ (CPI-
inflation-adjusted to 2017 NZ$).

In assessing the FARs of each event, we first ensured that the modelled FARs validated
towards the tail of the distribution—this is to reflect the uncertainty in estimating the rarity of
the actual event. We examined FAR maps for extreme precipitation events at each integer
threshold across 1–4% annual exceedance probabilities inclusive, for each season. We then
determined a FAR value for each event by examining maps of FAR at the location and
percentile determined from the observations, for the appropriate season in which the event
occurred, and using the map of FAR computed for the appropriate rainfall duration (1, 3 or
5 days). Where we had the explicit year of modelling for an event (i.e. for events in 2013, 2014
or 2015), we used the model ensembles from the year in question to compute FAR; where we
did not, we used results from the 3 years of modelling (2013–2015) pooled.

Based on the FARs presented in Table 1, we estimate that major-flood insured costs
attributable to anthropogenic influence on climate are currently somewhere in the vicinity of
$140M for this decade. This is what anthropogenic climate change cost the insurance sector in
these events. This figure of $140M is understated, as it does not include the attributable costs
of more minor floods, and these costs will very likely increase over time, given our finding that
virtually all rainfall FARs were substantially positive. As stated earlier, nor does it include all
the damages and losses associated with these floods that were not insured. Further investiga-
tion into additional smaller flooding events, and extension of the analysis framework to include
storm damage and flooding associated with cyclones (especially the four tropical cyclone
remnants that hit New Zealand in 2017–2018), an accounting of uninsured damages, and
estimates of indirect economic losses would almost certainly represent a large net increase over
these numbers.

3.6 Droughts

The drought FARs are based primarily on Harrington et al. (2016), in which the CMIP5
ensemble of models (Taylor et al. 2012) was investigated using self-organising maps
(Hewitson and Crane 2002; Gibson et al. 2017). Two droughts are considered, one in 2007/
2008 and one in 2012/2013. In the case of the latter, estimates of the FAR depend considerably
on how the drought is characterized, and this yields a range of plausible FARs, from 40%
(using monthly pressure anomalies or the frequency of blocking high pressure systems) to 15%
(using precipitation deficits or daily circulation properties). There is a robust anthropogenic
increase in the likelihood of observing those SOM nodes which occurred frequently during the
2013 drought. In addition, the SOM approach in Harrington et al. (2016) also represents a
method of circumventing difficulties in evaluating anthropogenic changes in drought likeli-
hood, particularly for those locations where precipitation-temperature coupling mechanisms
are less significant. Since the overall FAR of the drought will be some (uncertain) combination
of the individual FAR components, the choice of a low but plausible FAR of 20% represents a
conservative choice.

The 2007/2008 drought occurred on the back of a significant El Niño event. Contributions
from El Niño events may not add linearly with contributions from anthropogenic climate
change. Without a full study of 2007/2008 conditions, we cannot be sure that the
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anthropogenic contribution is similar in the 2007/2008 and 2012/2013 cases, since the relative
frequency of different synoptic patterns contributing to the drought may be different in El Niño
years compared with neutral years and compared with La Niña years (Risser et al. 2017). Joint
effects could well be additive, increasing the FAR, since there are reasons to believe that the
frequency of ENSO conditions is increasing as a result of climate change (Wang et al. 2017).
In this study, we have chosen a moderate value of 15%, but higher values are highly plausible.

Costs associated with the 2012/2013 drought have been estimated at NZ$1.5 billion by the
New Zealand Treasury based on a reduced growth in gross domestic product, compared with a
hypothetical year without drought (Treasury 2013). With a FAR of 20%, this yields excess
costs of the drought due to anthropogenic climate change of NZ$300M. We note that the two
drought events analysed were not the only droughts occurring in any part of New Zealand
during this decade (2007–2017). We focus on these two events as these events are the only
ones for which there is an available quantification of their economic losses. Other extreme
weather or extreme weather–related hazards that might have FAR ≠ 0 associated with them—
such as storm (damage from winds and storm surges), hailstorms, wildfires, frosts or
tornadoes—were all omitted from the analysis because no peer-reviewed attribution studies
have yet been conducted for these events occurring in New Zealand.

While developing a simple estimate of the insured losses from floods and the economic
costs of droughts which are associated with climate change, the study is not comprehensive,
and represents a significant underestimate of the full range of losses of climate change in New
Zealand. At the end of the paper, we describe the prospects for including other hydrometeo-
rological events within the framework, as well as secondary systems and cascading impacts.

3.7 Treatment of uncertainties

The economic impact cost estimates and FAR estimates in this report are uncertain, with
uncertainties around cost probably being the larger of the two. Uncertainty estimates for FARs
are presented in the table. Uncertainties associated with the heavy precipitation FARs,
estimated by examining the FAR maps for the appropriate location, season and percentile,
were estimated as usually likely to be around ± 0.2. In some cases—notably the Otago flood
event, which is the subject of a paper in preparation—this means that the FARs even have
some considerable likelihood of being negative, i.e. there is a likelihood that the event in
question has become less likely because of climate change, even though the balance of
evidence suggests certain aspects within the event (namely the intensity of rainfall) were
likely made more severe because of climate change. Uncertainty in the drought FARs was
estimated by attempting to combine information from Harrington et al. (2016), who examined
various metrics (e.g. high surface pressure, low precipitation) individually. A combination of
these influences would likely lead to higher FARs than is implied by each component
individually; this in part contributes to the uncertainty estimate (Table 2) being asymmetric.
The uncertainties about economic impact costs arise first and foremost because in both cases
(droughts and floods), we only have a quantification of a part of the overall impacts (economic
losses and insured damages, respectively). In addition, the quantities we do use are estimates of
the true quantities, and the estimates of economic losses for droughts in particular are subject to
substantial uncertainties around them. In fact, the Reserve Bank of New Zealand estimated that
the economic loss of the 2013 drought event could be twice the magnitude we used in our
analysis here (Kamber et al. 2013).
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An additional uncertainty arises through our use of a rainfall, as against flooding, attribu-
tion. The scale of flooding clearly depends on other factors, such as antecedent soil moisture
conditions, as well as rainfall. In New Zealand, it does seem a reasonable assumption that
rainfall could provide an acceptable proxy for flooding in assessing the attribution results;
however, it is acknowledged that we do not currently know the scale of the uncertainty
introduced by this approximation. Future work, requiring substantially increased resources,
is necessary to investigate this.

4 Discussion

4.1 Future developments

The framework developed in this paper needs further development. On the climate science
side, we are planning to incorporate multiple lines of evidence, a broader set of hydromete-
orological variables, and, eventually, ecosystem change. On the economic impact side, we are
developing datasets, based both on government-produced statistics and on remote sensing
data, which should give us a much greater insight into the impacts of weather-related disasters
on New Zealand. Further into the future, we are planning to engage with other communities in
the areas of ecosystem health, conservation, and especially non-monetised impacts associated
with damage to indigenous cultural capital.

One important step is to broaden the science basis on which we make inferences about
FARs. The use of multiple lines of evidence, each with its own capabilities and limits, would
help us develop a more rounded picture of the physical processes governing changes in
climate, and would therefore improve the assessments we are able to produce.

Incorporating more types of events would also make the attribution exercise deeper and
more comprehensive. A 2016 study discussed scientific confidence in the ability of climate
models to simulate phenomena relevant to extreme events (National Academies of Sciences
and Medicine 2016). Nearly always, larger-scale phenomena (such as extreme heat and
extreme cold) were better simulated than smaller-scale ones (such as severe convective
storms). Incorporation of other important elements of change is more challenging because
models cannot yet simulate adequately the appropriate scales or processes, as is the case, for
instance, with tropical cyclones and tornadoes. As climate modelling progresses, the range of
events amenable to quantification via attribution techniques is expected to increase.

Furthermore, cascading impacts—impacts in which anthropogenic climate change effects
are mediated by other systems—present additional challenges for climate change attribution
frameworks (Otto et al. 2017; Challinor et al. 2018; Lawrence et al. 2019). One future
development that is directly relevant is the integration of climate and hydrological work within
an attribution setting (Hidalgo et al. 2009; Kay et al. 2018; Philip et al. 2019). Utilising an
integrated hydrological and climate infrastructure to calculate FARs would allow better
quantification of flood risk, as well as improvements in our understanding of current and
future climate risks.

4.2 Potential uses and limitations of the approach

Our approach is intended to augment rather than replace other streams of information
regarding climate change costs. As sketched above, for many adaptation planners, especially

Climatic Change



at the local scale, other forms of quantification of impacts may be preferable. There is a rich
literature focused on climate change adaptation and practice which emphasizes the roles of
policy (Noble et al. 2014) (Mimura et al. 2014), and the centrality of vulnerability, inequalities,
and other social factors (Olsson et al. 2014). This literature critiques the tendencies of scientists
to over-provide numerically substantive inputs, while failing to address the underlying social
contexts in which climate change impacts and adaptation occur (Olsson et al. 2014). In
developing the present approach, we are mindful of these concerns, and we emphasise that
studies like this can provide a new set of inputs which may have value for some researchers,
practitioners and policymakers with interests in the aggregation of climate change cost
information.

Our method quantifies the probability of the combined weather-cost/damage events that have
occurred in recent years. This context has some consequences. First, it is not a comprehensive
assessment of the anthropogenic role in weather-related risk. While in theory we could have
included events with decreased probability because of human interference, in practice those
events are less likely to occur and thus less likely to be included in our type of event-triggered
analysis, producing a selection bias towards increased attributable costs (NAS 2016). A more
systematic selection of events could be used that does not depend on event occurrence (Risser
et al. 2019), but that would decouple the assessment from experienced costs and damages.

Second, as is well-recognized in the climate change adaptation literature, experienced costs
and damages take place in the context of the historical pathway of adaptation actions, whether
as proactive approaches to mitigate against anticipated climate change damages or as reactive
responses to avoid repeats of experienced damage. These decisions may have differed in a
world without human interference in the climate system. Hence, in such a natural world, the
same sequence of extreme weather may have induced higher or lower costs and damages than
actually occurred. As such, our estimates only include the impacts after adaptation to the
changes wrought by climatic change, and therefore do not count the full costs of climate
change (which should include these adaptation measures that were already taken and paid for).

Third, our assessment used a very simple model of translating extreme weather to costs and
damages: a step function. Though attractively simple, the step function translation also leaves
out complexities inherent in that translation. In the case of flooding, potential complexities
include antecedent conditions which might be less hazardous under anthropogenic climate
change by, for example, being likely drier or having a smaller snowpack (Kay et al. 2011). In
the flooding events analysed here, we expect the role of these complexities and antecedent
conditions to be reduced, compared with the situation for much larger catchments found in
continents, since we are dealing only with short-duration rainfall events with a direct connec-
tion to pluvial floods.

Fourth, and related to the point immediately above, the attributable anthropogenic costs we
have calculated may bear on responsibility for costs and damages but does not amount to a full
assessment of responsibility, since damage results from a confluence of causal factors such as
historical policy on property development, building codes, and local and regional land
management, as well as maintenance and usage of local and regional drainage systems (in
the case of flooding). A full assignment of responsibility would require assessment of the role
of such factors and whether that role can be considered reasonable.

Finally, it is perhaps surprising that there have not been more comprehensive attempts to tie
PEA techniques to disaster losses in public discussions. One reason may be a general lack of
awareness of PEA capabilities among users of climate science information. A frequent, but
somewhat mistaken, comment is that we cannot attribute single events to climate change. Yet

Climatic Change



for a decade or so the climate research community has been able to say with some confidence
how the odds of such events have been changing because of climate change. A few studies
have made quantitative attribution statements about damaging impacts of climate change, e.g.
on flood risk (Schaller et al. 2016), on numbers of homes flooded (Kay et al. 2018) and on
extreme heat-related deaths (Mitchell et al. 2016). Such studies are, however, very few in
number compared with those on the attribution of the meteorological events themselves, and
do not address disaster losses in financial terms, as done here.

The caution which some commentators have expressed around event attribution’s potential
roles (Hulme 2014) may also have contributed to its slow uptake, as adaptation researchers and
practitioners sometimes subscribe to a vulnerability-centred view in which policymakers have
to address extreme events, regardless of whether climate change is a driver (Parker et al. 2017).
We think this line of argument is incomplete, however. How much change there has been in
extreme events, and how fast they may be expected to change, and what are the costs
associated with this change, are all highly relevant issues, even within a vulnerability-led
conception of adaptation priorities. PEA can help with these quantifications.

Finally, not all those who need to adapt to a changing climate operate in a vulnerability-led
paradigm. Some work more with hazards and some work more with risks. We envisage, and
have encountered, significant interest in this type of study among people working in diverse
areas such as risk management, insurance, or capital management.

5 Conclusion

The purpose of this pathfinder study was to develop a method for quantifying approximate
costs associated with recent (2007–2017) extreme weather–related climate change in New
Zealand, especially those related to extreme precipitation (both abundance and dearth). Our
results are necessarily approximate and represent an underestimate because (1) limited re-
sources dictated that a simple approach be taken with the modelling that was readily available,
and thus the study restricts its attention to the most significant fourteen climate change–related
extreme weather events (specifically rainfall and drought) in New Zealand across the chosen
decade. (2) We are further limited by data availability, which forces us to use only insured
damages—and not uninsured damages nor economic losses—associated with flooding events,
and only economic losses—and not damages—when examining droughts. Despite these
limitations, the study provides a rough estimate of current climate change attributable costs
of floods and droughts, and the methodology could be extended to examine a wider range of
other impacts, potentially forming one element of a more comprehensive “bottom-up” under-
standing of climate-related risks in New Zealand.

The method introduced in this paper is also intended as a preliminary “bottom-up”
approach to complement the “top-down” approach of IAMs (Conway et al. 2019). This aspect
of the research is further developed in the companion piece on Hurricane Harvey (Frame et al.
2020), where we argue that IAM-based estimates of the costs of anthropogenic climate change
ignore a substantial contribution to the actual costs.

Our next steps include generating a comprehensive database of extreme weather and its
associated damage; expanding the analysis to different types of damage associated with further
types of extreme weather events; and assessing the relative importance and role of the various
sources of incompleteness, contingency, and potential biases in our analysis. Additional plans
include developing New Zealand’s detection and attribution capability, and developing ways to
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better assess the economic losses associated with extreme weather events (as per the 2015 Sendai
Agreement).

Human influence on the climate has played a role in changing the frequency of extreme
weather events in New Zealand.We have attempted to quantify the effects of climate change on
the economic costs associated with those events. This approach provides a new “bottom-up”
approach to the quantification of economic costs associated with anthropogenic climate change.
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